| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpocnle.l |
|
| 2 |
|
lhpocnle.o |
|
| 3 |
|
lhpocnle.h |
|
| 4 |
|
hlatl |
|
| 5 |
4
|
adantr |
|
| 6 |
|
simpr |
|
| 7 |
|
eqid |
|
| 8 |
7 3
|
lhpbase |
|
| 9 |
|
eqid |
|
| 10 |
7 2 9 3
|
lhpoc |
|
| 11 |
8 10
|
sylan2 |
|
| 12 |
6 11
|
mpbid |
|
| 13 |
|
eqid |
|
| 14 |
13 9
|
atn0 |
|
| 15 |
5 12 14
|
syl2anc |
|
| 16 |
15
|
neneqd |
|
| 17 |
|
simpr |
|
| 18 |
|
hllat |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
hlop |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
8
|
ad2antlr |
|
| 23 |
7 2
|
opoccl |
|
| 24 |
21 22 23
|
syl2anc |
|
| 25 |
7 1
|
latref |
|
| 26 |
19 24 25
|
syl2anc |
|
| 27 |
|
eqid |
|
| 28 |
7 1 27
|
latlem12 |
|
| 29 |
19 24 22 24 28
|
syl13anc |
|
| 30 |
17 26 29
|
mpbi2and |
|
| 31 |
7 2 27 13
|
opnoncon |
|
| 32 |
21 22 31
|
syl2anc |
|
| 33 |
30 32
|
breqtrd |
|
| 34 |
7 1 13
|
ople0 |
|
| 35 |
21 24 34
|
syl2anc |
|
| 36 |
33 35
|
mpbid |
|
| 37 |
16 36
|
mtand |
|