Metamath Proof Explorer


Theorem lhpset

Description: The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012)

Ref Expression
Hypotheses lhpset.b B = Base K
lhpset.u 1 ˙ = 1. K
lhpset.c C = K
lhpset.h H = LHyp K
Assertion lhpset K A H = w B | w C 1 ˙

Proof

Step Hyp Ref Expression
1 lhpset.b B = Base K
2 lhpset.u 1 ˙ = 1. K
3 lhpset.c C = K
4 lhpset.h H = LHyp K
5 elex K A K V
6 fveq2 k = K Base k = Base K
7 6 1 eqtr4di k = K Base k = B
8 eqidd k = K w = w
9 fveq2 k = K k = K
10 9 3 eqtr4di k = K k = C
11 fveq2 k = K 1. k = 1. K
12 11 2 eqtr4di k = K 1. k = 1 ˙
13 8 10 12 breq123d k = K w k 1. k w C 1 ˙
14 7 13 rabeqbidv k = K w Base k | w k 1. k = w B | w C 1 ˙
15 df-lhyp LHyp = k V w Base k | w k 1. k
16 1 fvexi B V
17 16 rabex w B | w C 1 ˙ V
18 14 15 17 fvmpt K V LHyp K = w B | w C 1 ˙
19 4 18 eqtrid K V H = w B | w C 1 ˙
20 5 19 syl K A H = w B | w C 1 ˙