Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
lidl0
Next ⟩
lidl1
Metamath Proof Explorer
Ascii
Unicode
Theorem
lidl0
Description:
Every ring contains a zero ideal.
(Contributed by
Stefan O'Rear
, 3-Jan-2015)
Ref
Expression
Hypotheses
lidl0.u
⊢
U
=
LIdeal
⁡
R
lidl0.z
⊢
0
˙
=
0
R
Assertion
lidl0
⊢
R
∈
Ring
→
0
˙
∈
U
Proof
Step
Hyp
Ref
Expression
1
lidl0.u
⊢
U
=
LIdeal
⁡
R
2
lidl0.z
⊢
0
˙
=
0
R
3
rlmlmod
⊢
R
∈
Ring
→
ringLMod
⁡
R
∈
LMod
4
rlm0
⊢
0
R
=
0
ringLMod
⁡
R
5
2
4
eqtri
⊢
0
˙
=
0
ringLMod
⁡
R
6
eqid
⊢
LSubSp
⁡
ringLMod
⁡
R
=
LSubSp
⁡
ringLMod
⁡
R
7
5
6
lsssn0
⊢
ringLMod
⁡
R
∈
LMod
→
0
˙
∈
LSubSp
⁡
ringLMod
⁡
R
8
3
7
syl
⊢
R
∈
Ring
→
0
˙
∈
LSubSp
⁡
ringLMod
⁡
R
9
lidlval
⊢
LIdeal
⁡
R
=
LSubSp
⁡
ringLMod
⁡
R
10
1
9
eqtri
⊢
U
=
LSubSp
⁡
ringLMod
⁡
R
11
8
10
eleqtrrdi
⊢
R
∈
Ring
→
0
˙
∈
U