Metamath Proof Explorer


Theorem lidl0ALT

Description: Alternate proof for lidl0 not using rnglidl0 : Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rnglidl0.u U = LIdeal R
rnglidl0.z 0 ˙ = 0 R
Assertion lidl0ALT R Ring 0 ˙ U

Proof

Step Hyp Ref Expression
1 rnglidl0.u U = LIdeal R
2 rnglidl0.z 0 ˙ = 0 R
3 rlmlmod R Ring ringLMod R LMod
4 rlm0 0 R = 0 ringLMod R
5 2 4 eqtri 0 ˙ = 0 ringLMod R
6 eqid LSubSp ringLMod R = LSubSp ringLMod R
7 5 6 lsssn0 ringLMod R LMod 0 ˙ LSubSp ringLMod R
8 3 7 syl R Ring 0 ˙ LSubSp ringLMod R
9 lidlval LIdeal R = LSubSp ringLMod R
10 1 9 eqtri U = LSubSp ringLMod R
11 8 10 eleqtrrdi R Ring 0 ˙ U