Metamath Proof Explorer


Theorem lidl0cl

Description: An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidlcl.u U = LIdeal R
lidl0cl.z 0 ˙ = 0 R
Assertion lidl0cl R Ring I U 0 ˙ I

Proof

Step Hyp Ref Expression
1 lidlcl.u U = LIdeal R
2 lidl0cl.z 0 ˙ = 0 R
3 rlm0 0 R = 0 ringLMod R
4 2 3 eqtri 0 ˙ = 0 ringLMod R
5 rlmlmod R Ring ringLMod R LMod
6 simpr R Ring I U I U
7 lidlval LIdeal R = LSubSp ringLMod R
8 1 7 eqtri U = LSubSp ringLMod R
9 6 8 eleqtrdi R Ring I U I LSubSp ringLMod R
10 eqid 0 ringLMod R = 0 ringLMod R
11 eqid LSubSp ringLMod R = LSubSp ringLMod R
12 10 11 lss0cl ringLMod R LMod I LSubSp ringLMod R 0 ringLMod R I
13 5 9 12 syl2an2r R Ring I U 0 ringLMod R I
14 4 13 eqeltrid R Ring I U 0 ˙ I