Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
lidl0cl
Next ⟩
lidlacl
Metamath Proof Explorer
Ascii
Unicode
Theorem
lidl0cl
Description:
An ideal contains 0.
(Contributed by
Stefan O'Rear
, 3-Jan-2015)
Ref
Expression
Hypotheses
lidlcl.u
⊢
U
=
LIdeal
⁡
R
lidl0cl.z
⊢
0
˙
=
0
R
Assertion
lidl0cl
⊢
R
∈
Ring
∧
I
∈
U
→
0
˙
∈
I
Proof
Step
Hyp
Ref
Expression
1
lidlcl.u
⊢
U
=
LIdeal
⁡
R
2
lidl0cl.z
⊢
0
˙
=
0
R
3
rlm0
⊢
0
R
=
0
ringLMod
⁡
R
4
2
3
eqtri
⊢
0
˙
=
0
ringLMod
⁡
R
5
rlmlmod
⊢
R
∈
Ring
→
ringLMod
⁡
R
∈
LMod
6
simpr
⊢
R
∈
Ring
∧
I
∈
U
→
I
∈
U
7
lidlval
⊢
LIdeal
⁡
R
=
LSubSp
⁡
ringLMod
⁡
R
8
1
7
eqtri
⊢
U
=
LSubSp
⁡
ringLMod
⁡
R
9
6
8
eleqtrdi
⊢
R
∈
Ring
∧
I
∈
U
→
I
∈
LSubSp
⁡
ringLMod
⁡
R
10
eqid
⊢
0
ringLMod
⁡
R
=
0
ringLMod
⁡
R
11
eqid
⊢
LSubSp
⁡
ringLMod
⁡
R
=
LSubSp
⁡
ringLMod
⁡
R
12
10
11
lss0cl
⊢
ringLMod
⁡
R
∈
LMod
∧
I
∈
LSubSp
⁡
ringLMod
⁡
R
→
0
ringLMod
⁡
R
∈
I
13
5
9
12
syl2an2r
⊢
R
∈
Ring
∧
I
∈
U
→
0
ringLMod
⁡
R
∈
I
14
4
13
eqeltrid
⊢
R
∈
Ring
∧
I
∈
U
→
0
˙
∈
I