Metamath Proof Explorer


Theorem lidl1

Description: Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 18-Apr-2025)

Ref Expression
Hypotheses rnglidl0.u U=LIdealR
rnglidl1.b B=BaseR
Assertion lidl1 RRingBU

Proof

Step Hyp Ref Expression
1 rnglidl0.u U=LIdealR
2 rnglidl1.b B=BaseR
3 ringrng RRingRRng
4 1 2 rnglidl1 RRngBU
5 3 4 syl RRingBU