Metamath Proof Explorer


Theorem lidl1el

Description: An ideal contains 1 iff it is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)

Ref Expression
Hypotheses lidlcl.u U = LIdeal R
lidlcl.b B = Base R
lidl1el.o 1 ˙ = 1 R
Assertion lidl1el R Ring I U 1 ˙ I I = B

Proof

Step Hyp Ref Expression
1 lidlcl.u U = LIdeal R
2 lidlcl.b B = Base R
3 lidl1el.o 1 ˙ = 1 R
4 2 1 lidlss I U I B
5 4 ad2antlr R Ring I U 1 ˙ I I B
6 eqid R = R
7 2 6 3 ringridm R Ring a B a R 1 ˙ = a
8 7 ad2ant2rl R Ring I U 1 ˙ I a B a R 1 ˙ = a
9 1 2 6 lidlmcl R Ring I U a B 1 ˙ I a R 1 ˙ I
10 9 ancom2s R Ring I U 1 ˙ I a B a R 1 ˙ I
11 8 10 eqeltrrd R Ring I U 1 ˙ I a B a I
12 11 expr R Ring I U 1 ˙ I a B a I
13 12 ssrdv R Ring I U 1 ˙ I B I
14 5 13 eqssd R Ring I U 1 ˙ I I = B
15 14 ex R Ring I U 1 ˙ I I = B
16 2 3 ringidcl R Ring 1 ˙ B
17 16 adantr R Ring I U 1 ˙ B
18 eleq2 I = B 1 ˙ I 1 ˙ B
19 17 18 syl5ibrcom R Ring I U I = B 1 ˙ I
20 15 19 impbid R Ring I U 1 ˙ I I = B