Metamath Proof Explorer


Theorem lidlacl

Description: An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidlcl.u U = LIdeal R
lidlacl.p + ˙ = + R
Assertion lidlacl R Ring I U X I Y I X + ˙ Y I

Proof

Step Hyp Ref Expression
1 lidlcl.u U = LIdeal R
2 lidlacl.p + ˙ = + R
3 rlmplusg + R = + ringLMod R
4 2 3 eqtri + ˙ = + ringLMod R
5 4 oveqi X + ˙ Y = X + ringLMod R Y
6 rlmlmod R Ring ringLMod R LMod
7 6 adantr R Ring I U ringLMod R LMod
8 simpr R Ring I U I U
9 lidlval LIdeal R = LSubSp ringLMod R
10 1 9 eqtri U = LSubSp ringLMod R
11 8 10 eleqtrdi R Ring I U I LSubSp ringLMod R
12 7 11 jca R Ring I U ringLMod R LMod I LSubSp ringLMod R
13 eqid + ringLMod R = + ringLMod R
14 eqid LSubSp ringLMod R = LSubSp ringLMod R
15 13 14 lssvacl ringLMod R LMod I LSubSp ringLMod R X I Y I X + ringLMod R Y I
16 12 15 sylan R Ring I U X I Y I X + ringLMod R Y I
17 5 16 eqeltrid R Ring I U X I Y I X + ˙ Y I