Database
BASIC ALGEBRAIC STRUCTURES
Ideals
The subring algebra; ideals
lidlacl
Next ⟩
lidlnegcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
lidlacl
Description:
An ideal is closed under addition.
(Contributed by
Stefan O'Rear
, 3-Jan-2015)
Ref
Expression
Hypotheses
lidlcl.u
⊢
U
=
LIdeal
⁡
R
lidlacl.p
⊢
+
˙
=
+
R
Assertion
lidlacl
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
I
∧
Y
∈
I
→
X
+
˙
Y
∈
I
Proof
Step
Hyp
Ref
Expression
1
lidlcl.u
⊢
U
=
LIdeal
⁡
R
2
lidlacl.p
⊢
+
˙
=
+
R
3
rlmplusg
⊢
+
R
=
+
ringLMod
⁡
R
4
2
3
eqtri
⊢
+
˙
=
+
ringLMod
⁡
R
5
4
oveqi
⊢
X
+
˙
Y
=
X
+
ringLMod
⁡
R
Y
6
rlmlmod
⊢
R
∈
Ring
→
ringLMod
⁡
R
∈
LMod
7
6
adantr
⊢
R
∈
Ring
∧
I
∈
U
→
ringLMod
⁡
R
∈
LMod
8
simpr
⊢
R
∈
Ring
∧
I
∈
U
→
I
∈
U
9
lidlval
⊢
LIdeal
⁡
R
=
LSubSp
⁡
ringLMod
⁡
R
10
1
9
eqtri
⊢
U
=
LSubSp
⁡
ringLMod
⁡
R
11
8
10
eleqtrdi
⊢
R
∈
Ring
∧
I
∈
U
→
I
∈
LSubSp
⁡
ringLMod
⁡
R
12
7
11
jca
⊢
R
∈
Ring
∧
I
∈
U
→
ringLMod
⁡
R
∈
LMod
∧
I
∈
LSubSp
⁡
ringLMod
⁡
R
13
eqid
⊢
+
ringLMod
⁡
R
=
+
ringLMod
⁡
R
14
eqid
⊢
LSubSp
⁡
ringLMod
⁡
R
=
LSubSp
⁡
ringLMod
⁡
R
15
13
14
lssvacl
⊢
ringLMod
⁡
R
∈
LMod
∧
I
∈
LSubSp
⁡
ringLMod
⁡
R
∧
X
∈
I
∧
Y
∈
I
→
X
+
ringLMod
⁡
R
Y
∈
I
16
12
15
sylan
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
I
∧
Y
∈
I
→
X
+
ringLMod
⁡
R
Y
∈
I
17
5
16
eqeltrid
⊢
R
∈
Ring
∧
I
∈
U
∧
X
∈
I
∧
Y
∈
I
→
X
+
˙
Y
∈
I