Metamath Proof Explorer


Theorem lidlmcl

Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 31-Mar-2025)

Ref Expression
Hypotheses lidlcl.u U = LIdeal R
lidlcl.b B = Base R
lidlmcl.t · ˙ = R
Assertion lidlmcl R Ring I U X B Y I X · ˙ Y I

Proof

Step Hyp Ref Expression
1 lidlcl.u U = LIdeal R
2 lidlcl.b B = Base R
3 lidlmcl.t · ˙ = R
4 ringrng R Ring R Rng
5 4 adantr R Ring I U R Rng
6 simpr R Ring I U I U
7 eqid 0 R = 0 R
8 1 7 lidl0cl R Ring I U 0 R I
9 5 6 8 3jca R Ring I U R Rng I U 0 R I
10 7 2 3 1 rnglidlmcl R Rng I U 0 R I X B Y I X · ˙ Y I
11 9 10 sylan R Ring I U X B Y I X · ˙ Y I