Metamath Proof Explorer


Theorem lidlmcl

Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidlcl.u U = LIdeal R
lidlcl.b B = Base R
lidlmcl.t · ˙ = R
Assertion lidlmcl R Ring I U X B Y I X · ˙ Y I

Proof

Step Hyp Ref Expression
1 lidlcl.u U = LIdeal R
2 lidlcl.b B = Base R
3 lidlmcl.t · ˙ = R
4 rlmvsca R = ringLMod R
5 3 4 eqtri · ˙ = ringLMod R
6 5 oveqi X · ˙ Y = X ringLMod R Y
7 rlmlmod R Ring ringLMod R LMod
8 7 ad2antrr R Ring I U X B Y I ringLMod R LMod
9 simpr R Ring I U I U
10 lidlval LIdeal R = LSubSp ringLMod R
11 1 10 eqtri U = LSubSp ringLMod R
12 9 11 eleqtrdi R Ring I U I LSubSp ringLMod R
13 12 adantr R Ring I U X B Y I I LSubSp ringLMod R
14 rlmsca R Ring R = Scalar ringLMod R
15 14 fveq2d R Ring Base R = Base Scalar ringLMod R
16 2 15 syl5eq R Ring B = Base Scalar ringLMod R
17 16 eleq2d R Ring X B X Base Scalar ringLMod R
18 17 biimpa R Ring X B X Base Scalar ringLMod R
19 18 ad2ant2r R Ring I U X B Y I X Base Scalar ringLMod R
20 simprr R Ring I U X B Y I Y I
21 eqid Scalar ringLMod R = Scalar ringLMod R
22 eqid ringLMod R = ringLMod R
23 eqid Base Scalar ringLMod R = Base Scalar ringLMod R
24 eqid LSubSp ringLMod R = LSubSp ringLMod R
25 21 22 23 24 lssvscl ringLMod R LMod I LSubSp ringLMod R X Base Scalar ringLMod R Y I X ringLMod R Y I
26 8 13 19 20 25 syl22anc R Ring I U X B Y I X ringLMod R Y I
27 6 26 eqeltrid R Ring I U X B Y I X · ˙ Y I