Metamath Proof Explorer


Theorem lidlss

Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses lidlss.b B = Base W
lidlss.i I = LIdeal W
Assertion lidlss U I U B

Proof

Step Hyp Ref Expression
1 lidlss.b B = Base W
2 lidlss.i I = LIdeal W
3 rlmbas Base W = Base ringLMod W
4 1 3 eqtri B = Base ringLMod W
5 lidlval LIdeal W = LSubSp ringLMod W
6 2 5 eqtri I = LSubSp ringLMod W
7 4 6 lssss U I U B