Metamath Proof Explorer


Theorem lidlsubcl

Description: An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses lidlcl.u U = LIdeal R
lidlsubcl.m - ˙ = - R
Assertion lidlsubcl R Ring I U X I Y I X - ˙ Y I

Proof

Step Hyp Ref Expression
1 lidlcl.u U = LIdeal R
2 lidlsubcl.m - ˙ = - R
3 1 lidlsubg R Ring I U I SubGrp R
4 3 3adant3 R Ring I U X I Y I I SubGrp R
5 simp3l R Ring I U X I Y I X I
6 simp3r R Ring I U X I Y I Y I
7 2 subgsubcl I SubGrp R X I Y I X - ˙ Y I
8 4 5 6 7 syl3anc R Ring I U X I Y I X - ˙ Y I
9 8 3expa R Ring I U X I Y I X - ˙ Y I