Metamath Proof Explorer


Theorem lidlsubg

Description: An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypothesis lidlcl.u U = LIdeal R
Assertion lidlsubg R Ring I U I SubGrp R

Proof

Step Hyp Ref Expression
1 lidlcl.u U = LIdeal R
2 eqid Base R = Base R
3 2 1 lidlss I U I Base R
4 3 adantl R Ring I U I Base R
5 eqid 0 R = 0 R
6 1 5 lidl0cl R Ring I U 0 R I
7 6 ne0d R Ring I U I
8 eqid + R = + R
9 1 8 lidlacl R Ring I U x I y I x + R y I
10 9 anassrs R Ring I U x I y I x + R y I
11 10 ralrimiva R Ring I U x I y I x + R y I
12 eqid inv g R = inv g R
13 1 12 lidlnegcl R Ring I U x I inv g R x I
14 13 3expa R Ring I U x I inv g R x I
15 11 14 jca R Ring I U x I y I x + R y I inv g R x I
16 15 ralrimiva R Ring I U x I y I x + R y I inv g R x I
17 ringgrp R Ring R Grp
18 17 adantr R Ring I U R Grp
19 2 8 12 issubg2 R Grp I SubGrp R I Base R I x I y I x + R y I inv g R x I
20 18 19 syl R Ring I U I SubGrp R I Base R I x I y I x + R y I inv g R x I
21 4 7 16 20 mpbir3and R Ring I U I SubGrp R