Metamath Proof Explorer


Theorem lidlunitel

Description: If an ideal I contains a unit J , then it is the whole ring. (Contributed by Thierry Arnoux, 19-Mar-2025)

Ref Expression
Hypotheses lidlunitel.1 B = Base R
lidlunitel.2 U = Unit R
lidlunitel.3 φ J U
lidlunitel.4 φ J I
lidlunitel.5 φ R Ring
lidlunitel.6 φ I LIdeal R
Assertion lidlunitel φ I = B

Proof

Step Hyp Ref Expression
1 lidlunitel.1 B = Base R
2 lidlunitel.2 U = Unit R
3 lidlunitel.3 φ J U
4 lidlunitel.4 φ J I
5 lidlunitel.5 φ R Ring
6 lidlunitel.6 φ I LIdeal R
7 eqid inv r R = inv r R
8 eqid R = R
9 eqid 1 R = 1 R
10 2 7 8 9 unitlinv R Ring J U inv r R J R J = 1 R
11 5 3 10 syl2anc φ inv r R J R J = 1 R
12 1 2 unitss U B
13 2 7 unitinvcl R Ring J U inv r R J U
14 5 3 13 syl2anc φ inv r R J U
15 12 14 sselid φ inv r R J B
16 eqid LIdeal R = LIdeal R
17 16 1 8 lidlmcl R Ring I LIdeal R inv r R J B J I inv r R J R J I
18 5 6 15 4 17 syl22anc φ inv r R J R J I
19 11 18 eqeltrrd φ 1 R I
20 16 1 9 lidl1el R Ring I LIdeal R 1 R I I = B
21 20 biimpa R Ring I LIdeal R 1 R I I = B
22 5 6 19 21 syl21anc φ I = B