Metamath Proof Explorer


Theorem lidlval

Description: Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Assertion lidlval LIdeal W = LSubSp ringLMod W

Proof

Step Hyp Ref Expression
1 df-lidl LIdeal = LSubSp ringLMod
2 1 fveq1i LIdeal W = LSubSp ringLMod W
3 00lss = LSubSp
4 rlmfn ringLMod Fn V
5 fnfun ringLMod Fn V Fun ringLMod
6 4 5 ax-mp Fun ringLMod
7 3 6 fvco4i LSubSp ringLMod W = LSubSp ringLMod W
8 2 7 eqtri LIdeal W = LSubSp ringLMod W