Metamath Proof Explorer


Theorem lidrideqd

Description: If there is a left and right identity element for any binary operation (group operation) .+ , both identity elements are equal. Generalization of statement in Lang p. 3: it is sufficient that "e" is a left identity element and "e``" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023)

Ref Expression
Hypotheses lidrideqd.l φLB
lidrideqd.r φRB
lidrideqd.li φxBL+˙x=x
lidrideqd.ri φxBx+˙R=x
Assertion lidrideqd φL=R

Proof

Step Hyp Ref Expression
1 lidrideqd.l φLB
2 lidrideqd.r φRB
3 lidrideqd.li φxBL+˙x=x
4 lidrideqd.ri φxBx+˙R=x
5 oveq1 x=Lx+˙R=L+˙R
6 id x=Lx=L
7 5 6 eqeq12d x=Lx+˙R=xL+˙R=L
8 7 4 1 rspcdva φL+˙R=L
9 oveq2 x=RL+˙x=L+˙R
10 id x=Rx=R
11 9 10 eqeq12d x=RL+˙x=xL+˙R=R
12 11 3 2 rspcdva φL+˙R=R
13 8 12 eqtr3d φL=R