Metamath Proof Explorer


Theorem lidrideqd

Description: If there is a left and right identity element for any binary operation (group operation) .+ , both identity elements are equal. Generalization of statement in Lang p. 3: it is sufficient that "e" is a left identity element and "e``" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023)

Ref Expression
Hypotheses lidrideqd.l φ L B
lidrideqd.r φ R B
lidrideqd.li φ x B L + ˙ x = x
lidrideqd.ri φ x B x + ˙ R = x
Assertion lidrideqd φ L = R

Proof

Step Hyp Ref Expression
1 lidrideqd.l φ L B
2 lidrideqd.r φ R B
3 lidrideqd.li φ x B L + ˙ x = x
4 lidrideqd.ri φ x B x + ˙ R = x
5 oveq1 x = L x + ˙ R = L + ˙ R
6 id x = L x = L
7 5 6 eqeq12d x = L x + ˙ R = x L + ˙ R = L
8 7 4 1 rspcdva φ L + ˙ R = L
9 oveq2 x = R L + ˙ x = L + ˙ R
10 id x = R x = R
11 9 10 eqeq12d x = R L + ˙ x = x L + ˙ R = R
12 11 3 2 rspcdva φ L + ˙ R = R
13 8 12 eqtr3d φ L = R