Metamath Proof Explorer


Theorem limccl

Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Assertion limccl F lim B

Proof

Step Hyp Ref Expression
1 limcrcl x F lim B F : dom F dom F B
2 eqid TopOpen fld 𝑡 dom F B = TopOpen fld 𝑡 dom F B
3 eqid TopOpen fld = TopOpen fld
4 2 3 limcfval F : dom F dom F B F lim B = y | z dom F B if z = B y F z TopOpen fld 𝑡 dom F B CnP TopOpen fld B F lim B
5 1 4 syl x F lim B F lim B = y | z dom F B if z = B y F z TopOpen fld 𝑡 dom F B CnP TopOpen fld B F lim B
6 5 simprd x F lim B F lim B
7 id x F lim B x F lim B
8 6 7 sseldd x F lim B x
9 8 ssriv F lim B