Database
BASIC REAL AND COMPLEX ANALYSIS
Derivatives
Real and complex differentiation
Derivatives of functions of one complex or real variable
limccl
Next ⟩
limcdif
Metamath Proof Explorer
Ascii
Unicode
Theorem
limccl
Description:
Closure of the limit operator.
(Contributed by
Mario Carneiro
, 25-Dec-2016)
Ref
Expression
Assertion
limccl
⊢
F
lim
ℂ
B
⊆
ℂ
Proof
Step
Hyp
Ref
Expression
1
limcrcl
⊢
x
∈
F
lim
ℂ
B
→
F
:
dom
⁡
F
⟶
ℂ
∧
dom
⁡
F
⊆
ℂ
∧
B
∈
ℂ
2
eqid
⊢
TopOpen
⁡
ℂ
fld
↾
𝑡
dom
⁡
F
∪
B
=
TopOpen
⁡
ℂ
fld
↾
𝑡
dom
⁡
F
∪
B
3
eqid
⊢
TopOpen
⁡
ℂ
fld
=
TopOpen
⁡
ℂ
fld
4
2
3
limcfval
⊢
F
:
dom
⁡
F
⟶
ℂ
∧
dom
⁡
F
⊆
ℂ
∧
B
∈
ℂ
→
F
lim
ℂ
B
=
y
|
z
∈
dom
⁡
F
∪
B
⟼
if
z
=
B
y
F
⁡
z
∈
TopOpen
⁡
ℂ
fld
↾
𝑡
dom
⁡
F
∪
B
CnP
TopOpen
⁡
ℂ
fld
⁡
B
∧
F
lim
ℂ
B
⊆
ℂ
5
1
4
syl
⊢
x
∈
F
lim
ℂ
B
→
F
lim
ℂ
B
=
y
|
z
∈
dom
⁡
F
∪
B
⟼
if
z
=
B
y
F
⁡
z
∈
TopOpen
⁡
ℂ
fld
↾
𝑡
dom
⁡
F
∪
B
CnP
TopOpen
⁡
ℂ
fld
⁡
B
∧
F
lim
ℂ
B
⊆
ℂ
6
5
simprd
⊢
x
∈
F
lim
ℂ
B
→
F
lim
ℂ
B
⊆
ℂ
7
id
⊢
x
∈
F
lim
ℂ
B
→
x
∈
F
lim
ℂ
B
8
6
7
sseldd
⊢
x
∈
F
lim
ℂ
B
→
x
∈
ℂ
9
8
ssriv
⊢
F
lim
ℂ
B
⊆
ℂ