Step |
Hyp |
Ref |
Expression |
1 |
|
limccnp.f |
|
2 |
|
limccnp.d |
|
3 |
|
limccnp.k |
|
4 |
|
limccnp.j |
|
5 |
|
limccnp.c |
|
6 |
|
limccnp.b |
|
7 |
3
|
cnfldtopon |
|
8 |
|
resttopon |
|
9 |
7 2 8
|
sylancr |
|
10 |
4 9
|
eqeltrid |
|
11 |
7
|
a1i |
|
12 |
|
cnpf2 |
|
13 |
10 11 6 12
|
syl3anc |
|
14 |
|
eqid |
|
15 |
14
|
cnprcl |
|
16 |
6 15
|
syl |
|
17 |
|
toponuni |
|
18 |
10 17
|
syl |
|
19 |
16 18
|
eleqtrrd |
|
20 |
19
|
ad2antrr |
|
21 |
1
|
ad2antrr |
|
22 |
|
elun |
|
23 |
|
elsni |
|
24 |
23
|
orim2i |
|
25 |
22 24
|
sylbi |
|
26 |
25
|
adantl |
|
27 |
26
|
orcomd |
|
28 |
27
|
orcanai |
|
29 |
21 28
|
ffvelrnd |
|
30 |
20 29
|
ifclda |
|
31 |
13 30
|
cofmpt |
|
32 |
|
fvco3 |
|
33 |
21 28 32
|
syl2anc |
|
34 |
33
|
ifeq2da |
|
35 |
|
fvif |
|
36 |
34 35
|
eqtr4di |
|
37 |
36
|
mpteq2dva |
|
38 |
31 37
|
eqtr4d |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
1 2
|
fssd |
|
42 |
1
|
fdmd |
|
43 |
|
limcrcl |
|
44 |
5 43
|
syl |
|
45 |
44
|
simp2d |
|
46 |
42 45
|
eqsstrrd |
|
47 |
44
|
simp3d |
|
48 |
39 3 40 41 46 47
|
ellimc |
|
49 |
5 48
|
mpbid |
|
50 |
3
|
cnfldtop |
|
51 |
50
|
a1i |
|
52 |
30
|
fmpttd |
|
53 |
47
|
snssd |
|
54 |
46 53
|
unssd |
|
55 |
|
resttopon |
|
56 |
7 54 55
|
sylancr |
|
57 |
|
toponuni |
|
58 |
56 57
|
syl |
|
59 |
58
|
feq2d |
|
60 |
52 59
|
mpbid |
|
61 |
|
eqid |
|
62 |
7
|
toponunii |
|
63 |
61 62
|
cnprest2 |
|
64 |
51 60 2 63
|
syl3anc |
|
65 |
49 64
|
mpbid |
|
66 |
4
|
oveq2i |
|
67 |
66
|
fveq1i |
|
68 |
65 67
|
eleqtrrdi |
|
69 |
|
iftrue |
|
70 |
|
ssun2 |
|
71 |
|
snssg |
|
72 |
47 71
|
syl |
|
73 |
70 72
|
mpbiri |
|
74 |
40 69 73 5
|
fvmptd3 |
|
75 |
74
|
fveq2d |
|
76 |
6 75
|
eleqtrrd |
|
77 |
|
cnpco |
|
78 |
68 76 77
|
syl2anc |
|
79 |
38 78
|
eqeltrrd |
|
80 |
|
eqid |
|
81 |
|
fco |
|
82 |
13 1 81
|
syl2anc |
|
83 |
39 3 80 82 46 47
|
ellimc |
|
84 |
79 83
|
mpbird |
|