| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limccnp.f |
|
| 2 |
|
limccnp.d |
|
| 3 |
|
limccnp.k |
|
| 4 |
|
limccnp.j |
|
| 5 |
|
limccnp.c |
|
| 6 |
|
limccnp.b |
|
| 7 |
3
|
cnfldtopon |
|
| 8 |
|
resttopon |
|
| 9 |
7 2 8
|
sylancr |
|
| 10 |
4 9
|
eqeltrid |
|
| 11 |
7
|
a1i |
|
| 12 |
|
cnpf2 |
|
| 13 |
10 11 6 12
|
syl3anc |
|
| 14 |
|
eqid |
|
| 15 |
14
|
cnprcl |
|
| 16 |
6 15
|
syl |
|
| 17 |
|
toponuni |
|
| 18 |
10 17
|
syl |
|
| 19 |
16 18
|
eleqtrrd |
|
| 20 |
19
|
ad2antrr |
|
| 21 |
1
|
ad2antrr |
|
| 22 |
|
elun |
|
| 23 |
|
elsni |
|
| 24 |
23
|
orim2i |
|
| 25 |
22 24
|
sylbi |
|
| 26 |
25
|
adantl |
|
| 27 |
26
|
orcomd |
|
| 28 |
27
|
orcanai |
|
| 29 |
21 28
|
ffvelcdmd |
|
| 30 |
20 29
|
ifclda |
|
| 31 |
13 30
|
cofmpt |
|
| 32 |
|
fvco3 |
|
| 33 |
21 28 32
|
syl2anc |
|
| 34 |
33
|
ifeq2da |
|
| 35 |
|
fvif |
|
| 36 |
34 35
|
eqtr4di |
|
| 37 |
36
|
mpteq2dva |
|
| 38 |
31 37
|
eqtr4d |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
1 2
|
fssd |
|
| 42 |
1
|
fdmd |
|
| 43 |
|
limcrcl |
|
| 44 |
5 43
|
syl |
|
| 45 |
44
|
simp2d |
|
| 46 |
42 45
|
eqsstrrd |
|
| 47 |
44
|
simp3d |
|
| 48 |
39 3 40 41 46 47
|
ellimc |
|
| 49 |
5 48
|
mpbid |
|
| 50 |
3
|
cnfldtop |
|
| 51 |
50
|
a1i |
|
| 52 |
30
|
fmpttd |
|
| 53 |
47
|
snssd |
|
| 54 |
46 53
|
unssd |
|
| 55 |
|
resttopon |
|
| 56 |
7 54 55
|
sylancr |
|
| 57 |
|
toponuni |
|
| 58 |
56 57
|
syl |
|
| 59 |
58
|
feq2d |
|
| 60 |
52 59
|
mpbid |
|
| 61 |
|
eqid |
|
| 62 |
7
|
toponunii |
|
| 63 |
61 62
|
cnprest2 |
|
| 64 |
51 60 2 63
|
syl3anc |
|
| 65 |
49 64
|
mpbid |
|
| 66 |
4
|
oveq2i |
|
| 67 |
66
|
fveq1i |
|
| 68 |
65 67
|
eleqtrrdi |
|
| 69 |
|
iftrue |
|
| 70 |
|
ssun2 |
|
| 71 |
|
snssg |
|
| 72 |
47 71
|
syl |
|
| 73 |
70 72
|
mpbiri |
|
| 74 |
40 69 73 5
|
fvmptd3 |
|
| 75 |
74
|
fveq2d |
|
| 76 |
6 75
|
eleqtrrd |
|
| 77 |
|
cnpco |
|
| 78 |
68 76 77
|
syl2anc |
|
| 79 |
38 78
|
eqeltrrd |
|
| 80 |
|
eqid |
|
| 81 |
|
fco |
|
| 82 |
13 1 81
|
syl2anc |
|
| 83 |
39 3 80 82 46 47
|
ellimc |
|
| 84 |
79 83
|
mpbird |
|