Step |
Hyp |
Ref |
Expression |
1 |
|
limccog.1 |
|
2 |
|
limccog.2 |
|
3 |
|
limccog.3 |
|
4 |
|
limccl |
|
5 |
4 3
|
sselid |
|
6 |
|
limcrcl |
|
7 |
3 6
|
syl |
|
8 |
7
|
simp1d |
|
9 |
7
|
simp2d |
|
10 |
7
|
simp3d |
|
11 |
|
eqid |
|
12 |
8 9 10 11
|
ellimc2 |
|
13 |
3 12
|
mpbid |
|
14 |
13
|
simprd |
|
15 |
14
|
r19.21bi |
|
16 |
15
|
imp |
|
17 |
|
simp1ll |
|
18 |
|
simp2 |
|
19 |
|
simp3l |
|
20 |
|
limcrcl |
|
21 |
2 20
|
syl |
|
22 |
21
|
simp1d |
|
23 |
21
|
simp2d |
|
24 |
21
|
simp3d |
|
25 |
22 23 24 11
|
ellimc2 |
|
26 |
2 25
|
mpbid |
|
27 |
26
|
simprd |
|
28 |
27
|
r19.21bi |
|
29 |
28
|
imp |
|
30 |
17 18 19 29
|
syl21anc |
|
31 |
|
imaco |
|
32 |
17
|
ad2antrr |
|
33 |
|
simpl3r |
|
34 |
33
|
adantr |
|
35 |
|
simpr |
|
36 |
|
simpr |
|
37 |
|
imassrn |
|
38 |
37 1
|
sstrid |
|
39 |
38
|
adantr |
|
40 |
36 39
|
ssind |
|
41 |
|
imass2 |
|
42 |
40 41
|
syl |
|
43 |
42
|
adantlr |
|
44 |
|
simplr |
|
45 |
43 44
|
sstrd |
|
46 |
32 34 35 45
|
syl21anc |
|
47 |
31 46
|
eqsstrid |
|
48 |
47
|
ex |
|
49 |
48
|
anim2d |
|
50 |
49
|
reximdva |
|
51 |
30 50
|
mpd |
|
52 |
51
|
rexlimdv3a |
|
53 |
16 52
|
mpd |
|
54 |
53
|
ex |
|
55 |
54
|
ralrimiva |
|
56 |
22
|
ffund |
|
57 |
|
fdmrn |
|
58 |
56 57
|
sylib |
|
59 |
1
|
difss2d |
|
60 |
58 59
|
fssd |
|
61 |
|
fco |
|
62 |
8 60 61
|
syl2anc |
|
63 |
62 23 24 11
|
ellimc2 |
|
64 |
5 55 63
|
mpbir2and |
|