| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limccl.f |
|
| 2 |
1
|
fdmd |
|
| 3 |
2
|
adantr |
|
| 4 |
|
limcrcl |
|
| 5 |
4
|
adantl |
|
| 6 |
5
|
simp2d |
|
| 7 |
3 6
|
eqsstrrd |
|
| 8 |
5
|
simp3d |
|
| 9 |
7 8
|
jca |
|
| 10 |
9
|
ex |
|
| 11 |
|
undif1 |
|
| 12 |
|
difss |
|
| 13 |
|
fssres |
|
| 14 |
1 12 13
|
sylancl |
|
| 15 |
14
|
fdmd |
|
| 16 |
15
|
adantr |
|
| 17 |
|
limcrcl |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
simp2d |
|
| 20 |
16 19
|
eqsstrrd |
|
| 21 |
18
|
simp3d |
|
| 22 |
21
|
snssd |
|
| 23 |
20 22
|
unssd |
|
| 24 |
11 23
|
eqsstrrid |
|
| 25 |
24
|
unssad |
|
| 26 |
25 21
|
jca |
|
| 27 |
26
|
ex |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
1
|
adantr |
|
| 32 |
|
simprl |
|
| 33 |
|
simprr |
|
| 34 |
28 29 30 31 32 33
|
ellimc |
|
| 35 |
11
|
eqcomi |
|
| 36 |
35
|
oveq2i |
|
| 37 |
35
|
mpteq1i |
|
| 38 |
|
elun |
|
| 39 |
|
velsn |
|
| 40 |
39
|
orbi2i |
|
| 41 |
|
pm5.61 |
|
| 42 |
|
fvres |
|
| 43 |
42
|
adantr |
|
| 44 |
41 43
|
sylbi |
|
| 45 |
44
|
ifeq2da |
|
| 46 |
40 45
|
sylbi |
|
| 47 |
38 46
|
sylbi |
|
| 48 |
47
|
mpteq2ia |
|
| 49 |
37 48
|
eqtr4i |
|
| 50 |
14
|
adantr |
|
| 51 |
32
|
ssdifssd |
|
| 52 |
36 29 49 50 51 33
|
ellimc |
|
| 53 |
34 52
|
bitr4d |
|
| 54 |
53
|
ex |
|
| 55 |
10 27 54
|
pm5.21ndd |
|
| 56 |
55
|
eqrdv |
|