Metamath Proof Explorer


Theorem limcdif

Description: It suffices to consider functions which are not defined at B to define the limit of a function. In particular, the value of the original function F at B does not affect the limit of F . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypothesis limccl.f φ F : A
Assertion limcdif φ F lim B = F A B lim B

Proof

Step Hyp Ref Expression
1 limccl.f φ F : A
2 1 fdmd φ dom F = A
3 2 adantr φ x F lim B dom F = A
4 limcrcl x F lim B F : dom F dom F B
5 4 adantl φ x F lim B F : dom F dom F B
6 5 simp2d φ x F lim B dom F
7 3 6 eqsstrrd φ x F lim B A
8 5 simp3d φ x F lim B B
9 7 8 jca φ x F lim B A B
10 9 ex φ x F lim B A B
11 undif1 A B B = A B
12 difss A B A
13 fssres F : A A B A F A B : A B
14 1 12 13 sylancl φ F A B : A B
15 14 fdmd φ dom F A B = A B
16 15 adantr φ x F A B lim B dom F A B = A B
17 limcrcl x F A B lim B F A B : dom F A B dom F A B B
18 17 adantl φ x F A B lim B F A B : dom F A B dom F A B B
19 18 simp2d φ x F A B lim B dom F A B
20 16 19 eqsstrrd φ x F A B lim B A B
21 18 simp3d φ x F A B lim B B
22 21 snssd φ x F A B lim B B
23 20 22 unssd φ x F A B lim B A B B
24 11 23 eqsstrrid φ x F A B lim B A B
25 24 unssad φ x F A B lim B A
26 25 21 jca φ x F A B lim B A B
27 26 ex φ x F A B lim B A B
28 eqid TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B
29 eqid TopOpen fld = TopOpen fld
30 eqid z A B if z = B x F z = z A B if z = B x F z
31 1 adantr φ A B F : A
32 simprl φ A B A
33 simprr φ A B B
34 28 29 30 31 32 33 ellimc φ A B x F lim B z A B if z = B x F z TopOpen fld 𝑡 A B CnP TopOpen fld B
35 11 eqcomi A B = A B B
36 35 oveq2i TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B B
37 35 mpteq1i z A B if z = B x F z = z A B B if z = B x F z
38 elun z A B B z A B z B
39 velsn z B z = B
40 39 orbi2i z A B z B z A B z = B
41 pm5.61 z A B z = B ¬ z = B z A B ¬ z = B
42 fvres z A B F A B z = F z
43 42 adantr z A B ¬ z = B F A B z = F z
44 41 43 sylbi z A B z = B ¬ z = B F A B z = F z
45 44 ifeq2da z A B z = B if z = B x F A B z = if z = B x F z
46 40 45 sylbi z A B z B if z = B x F A B z = if z = B x F z
47 38 46 sylbi z A B B if z = B x F A B z = if z = B x F z
48 47 mpteq2ia z A B B if z = B x F A B z = z A B B if z = B x F z
49 37 48 eqtr4i z A B if z = B x F z = z A B B if z = B x F A B z
50 14 adantr φ A B F A B : A B
51 32 ssdifssd φ A B A B
52 36 29 49 50 51 33 ellimc φ A B x F A B lim B z A B if z = B x F z TopOpen fld 𝑡 A B CnP TopOpen fld B
53 34 52 bitr4d φ A B x F lim B x F A B lim B
54 53 ex φ A B x F lim B x F A B lim B
55 10 27 54 pm5.21ndd φ x F lim B x F A B lim B
56 55 eqrdv φ F lim B = F A B lim B