Metamath Proof Explorer


Theorem limcdm0

Description: If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcdm0.f φ F :
limcdm0.b φ B
Assertion limcdm0 φ F lim B =

Proof

Step Hyp Ref Expression
1 limcdm0.f φ F :
2 limcdm0.b φ B
3 limccl F lim B
4 3 sseli x F lim B x
5 4 adantl φ x F lim B x
6 simpr φ x x
7 1rp 1 +
8 ral0 z z B z B < 1 F z x < y
9 brimralrspcev 1 + z z B z B < 1 F z x < y w + z z B z B < w F z x < y
10 7 8 9 mp2an w + z z B z B < w F z x < y
11 10 rgenw y + w + z z B z B < w F z x < y
12 11 a1i φ x y + w + z z B z B < w F z x < y
13 1 adantr φ x F :
14 0ss
15 14 a1i φ x
16 2 adantr φ x B
17 13 15 16 ellimc3 φ x x F lim B x y + w + z z B z B < w F z x < y
18 6 12 17 mpbir2and φ x x F lim B
19 5 18 impbida φ x F lim B x
20 19 eqrdv φ F lim B =