Metamath Proof Explorer


Theorem limcflflem

Description: Lemma for limcflf . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcflf.f φ F : A
limcflf.a φ A
limcflf.b φ B limPt K A
limcflf.k K = TopOpen fld
limcflf.c C = A B
limcflf.l L = nei K B 𝑡 C
Assertion limcflflem φ L Fil C

Proof

Step Hyp Ref Expression
1 limcflf.f φ F : A
2 limcflf.a φ A
3 limcflf.b φ B limPt K A
4 limcflf.k K = TopOpen fld
5 limcflf.c C = A B
6 limcflf.l L = nei K B 𝑡 C
7 4 cnfldtop K Top
8 4 cnfldtopon K TopOn
9 8 toponunii = K
10 9 islp K Top A B limPt K A B cls K A B
11 7 2 10 sylancr φ B limPt K A B cls K A B
12 3 11 mpbid φ B cls K A B
13 5 fveq2i cls K C = cls K A B
14 12 13 eleqtrrdi φ B cls K C
15 difss A B A
16 5 15 eqsstri C A
17 16 2 sstrid φ C
18 9 lpss K Top A limPt K A
19 7 2 18 sylancr φ limPt K A
20 19 3 sseldd φ B
21 trnei K TopOn C B B cls K C nei K B 𝑡 C Fil C
22 8 17 20 21 mp3an2i φ B cls K C nei K B 𝑡 C Fil C
23 14 22 mpbid φ nei K B 𝑡 C Fil C
24 6 23 eqeltrid φ L Fil C