Metamath Proof Explorer


Theorem limcfval

Description: Value and set bounds on the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcval.j J = K 𝑡 A B
limcval.k K = TopOpen fld
Assertion limcfval F : A A B F lim B = y | z A B if z = B y F z J CnP K B F lim B

Proof

Step Hyp Ref Expression
1 limcval.j J = K 𝑡 A B
2 limcval.k K = TopOpen fld
3 df-limc lim = f 𝑝𝑚 , x y | [˙ TopOpen fld / j]˙ z dom f x if z = x y f z j 𝑡 dom f x CnP j x
4 3 a1i F : A A B lim = f 𝑝𝑚 , x y | [˙ TopOpen fld / j]˙ z dom f x if z = x y f z j 𝑡 dom f x CnP j x
5 fvexd F : A A B f = F x = B TopOpen fld V
6 simplrl F : A A B f = F x = B j = TopOpen fld f = F
7 6 dmeqd F : A A B f = F x = B j = TopOpen fld dom f = dom F
8 simpll1 F : A A B f = F x = B j = TopOpen fld F : A
9 8 fdmd F : A A B f = F x = B j = TopOpen fld dom F = A
10 7 9 eqtrd F : A A B f = F x = B j = TopOpen fld dom f = A
11 simplrr F : A A B f = F x = B j = TopOpen fld x = B
12 11 sneqd F : A A B f = F x = B j = TopOpen fld x = B
13 10 12 uneq12d F : A A B f = F x = B j = TopOpen fld dom f x = A B
14 11 eqeq2d F : A A B f = F x = B j = TopOpen fld z = x z = B
15 6 fveq1d F : A A B f = F x = B j = TopOpen fld f z = F z
16 14 15 ifbieq2d F : A A B f = F x = B j = TopOpen fld if z = x y f z = if z = B y F z
17 13 16 mpteq12dv F : A A B f = F x = B j = TopOpen fld z dom f x if z = x y f z = z A B if z = B y F z
18 simpr F : A A B f = F x = B j = TopOpen fld j = TopOpen fld
19 18 2 eqtr4di F : A A B f = F x = B j = TopOpen fld j = K
20 19 13 oveq12d F : A A B f = F x = B j = TopOpen fld j 𝑡 dom f x = K 𝑡 A B
21 20 1 eqtr4di F : A A B f = F x = B j = TopOpen fld j 𝑡 dom f x = J
22 21 19 oveq12d F : A A B f = F x = B j = TopOpen fld j 𝑡 dom f x CnP j = J CnP K
23 22 11 fveq12d F : A A B f = F x = B j = TopOpen fld j 𝑡 dom f x CnP j x = J CnP K B
24 17 23 eleq12d F : A A B f = F x = B j = TopOpen fld z dom f x if z = x y f z j 𝑡 dom f x CnP j x z A B if z = B y F z J CnP K B
25 5 24 sbcied F : A A B f = F x = B [˙ TopOpen fld / j]˙ z dom f x if z = x y f z j 𝑡 dom f x CnP j x z A B if z = B y F z J CnP K B
26 25 abbidv F : A A B f = F x = B y | [˙ TopOpen fld / j]˙ z dom f x if z = x y f z j 𝑡 dom f x CnP j x = y | z A B if z = B y F z J CnP K B
27 cnex V
28 elpm2r V V F : A A F 𝑝𝑚
29 27 27 28 mpanl12 F : A A F 𝑝𝑚
30 29 3adant3 F : A A B F 𝑝𝑚
31 simp3 F : A A B B
32 eqid z A B if z = B y F z = z A B if z = B y F z
33 1 2 32 limcvallem F : A A B z A B if z = B y F z J CnP K B y
34 33 abssdv F : A A B y | z A B if z = B y F z J CnP K B
35 27 ssex y | z A B if z = B y F z J CnP K B y | z A B if z = B y F z J CnP K B V
36 34 35 syl F : A A B y | z A B if z = B y F z J CnP K B V
37 4 26 30 31 36 ovmpod F : A A B F lim B = y | z A B if z = B y F z J CnP K B
38 37 34 eqsstrd F : A A B F lim B
39 37 38 jca F : A A B F lim B = y | z A B if z = B y F z J CnP K B F lim B