Step |
Hyp |
Ref |
Expression |
1 |
|
limciccioolb.1 |
|
2 |
|
limciccioolb.2 |
|
3 |
|
limciccioolb.3 |
|
4 |
|
limciccioolb.4 |
|
5 |
|
ioossicc |
|
6 |
5
|
a1i |
|
7 |
1 2
|
iccssred |
|
8 |
|
ax-resscn |
|
9 |
7 8
|
sstrdi |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
retop |
|
13 |
12
|
a1i |
|
14 |
2
|
rexrd |
|
15 |
|
icossre |
|
16 |
1 14 15
|
syl2anc |
|
17 |
|
difssd |
|
18 |
16 17
|
unssd |
|
19 |
|
uniretop |
|
20 |
18 19
|
sseqtrdi |
|
21 |
|
elioore |
|
22 |
21
|
ad2antlr |
|
23 |
|
simpr |
|
24 |
|
simpr |
|
25 |
|
mnfxr |
|
26 |
25
|
a1i |
|
27 |
14
|
adantr |
|
28 |
|
elioo2 |
|
29 |
26 27 28
|
syl2anc |
|
30 |
24 29
|
mpbid |
|
31 |
30
|
simp3d |
|
32 |
31
|
adantr |
|
33 |
1
|
ad2antrr |
|
34 |
14
|
ad2antrr |
|
35 |
|
elico2 |
|
36 |
33 34 35
|
syl2anc |
|
37 |
22 23 32 36
|
mpbir3and |
|
38 |
37
|
orcd |
|
39 |
21
|
ad2antlr |
|
40 |
|
simpr |
|
41 |
40
|
intnanrd |
|
42 |
1
|
rexrd |
|
43 |
42
|
ad2antrr |
|
44 |
14
|
ad2antrr |
|
45 |
39
|
rexrd |
|
46 |
|
elicc4 |
|
47 |
43 44 45 46
|
syl3anc |
|
48 |
41 47
|
mtbird |
|
49 |
39 48
|
eldifd |
|
50 |
49
|
olcd |
|
51 |
38 50
|
pm2.61dan |
|
52 |
|
elun |
|
53 |
51 52
|
sylibr |
|
54 |
53
|
ralrimiva |
|
55 |
|
dfss3 |
|
56 |
54 55
|
sylibr |
|
57 |
|
eqid |
|
58 |
57
|
ntrss |
|
59 |
13 20 56 58
|
syl3anc |
|
60 |
25
|
a1i |
|
61 |
1
|
mnfltd |
|
62 |
60 14 1 61 3
|
eliood |
|
63 |
|
iooretop |
|
64 |
63
|
a1i |
|
65 |
|
isopn3i |
|
66 |
13 64 65
|
syl2anc |
|
67 |
62 66
|
eleqtrrd |
|
68 |
59 67
|
sseldd |
|
69 |
1
|
leidd |
|
70 |
1 2 3
|
ltled |
|
71 |
1 2 1 69 70
|
eliccd |
|
72 |
68 71
|
elind |
|
73 |
|
icossicc |
|
74 |
73
|
a1i |
|
75 |
|
eqid |
|
76 |
19 75
|
restntr |
|
77 |
13 7 74 76
|
syl3anc |
|
78 |
72 77
|
eleqtrrd |
|
79 |
|
eqid |
|
80 |
10 79
|
rerest |
|
81 |
7 80
|
syl |
|
82 |
81
|
eqcomd |
|
83 |
82
|
fveq2d |
|
84 |
83
|
fveq1d |
|
85 |
78 84
|
eleqtrd |
|
86 |
71
|
snssd |
|
87 |
|
ssequn2 |
|
88 |
86 87
|
sylib |
|
89 |
88
|
eqcomd |
|
90 |
89
|
oveq2d |
|
91 |
90
|
fveq2d |
|
92 |
|
uncom |
|
93 |
|
snunioo |
|
94 |
42 14 3 93
|
syl3anc |
|
95 |
92 94
|
eqtr2id |
|
96 |
91 95
|
fveq12d |
|
97 |
85 96
|
eleqtrd |
|
98 |
4 6 9 10 11 97
|
limcres |
|