Metamath Proof Explorer


Theorem limcicciooub

Description: The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcicciooub.1 φ A
limcicciooub.2 φ B
limcicciooub.3 φ A < B
limcicciooub.4 φ F : A B
Assertion limcicciooub φ F A B lim B = F lim B

Proof

Step Hyp Ref Expression
1 limcicciooub.1 φ A
2 limcicciooub.2 φ B
3 limcicciooub.3 φ A < B
4 limcicciooub.4 φ F : A B
5 ioossicc A B A B
6 5 a1i φ A B A B
7 1 2 iccssred φ A B
8 ax-resscn
9 7 8 sstrdi φ A B
10 eqid TopOpen fld = TopOpen fld
11 eqid TopOpen fld 𝑡 A B B = TopOpen fld 𝑡 A B B
12 retop topGen ran . Top
13 12 a1i φ topGen ran . Top
14 1 rexrd φ A *
15 iocssre A * B A B
16 14 2 15 syl2anc φ A B
17 difssd φ A B
18 16 17 unssd φ A B A B
19 uniretop = topGen ran .
20 18 19 sseqtrdi φ A B A B topGen ran .
21 elioore x A +∞ x
22 21 ad2antlr φ x A +∞ x B x
23 simplr φ x A +∞ x B x A +∞
24 14 ad2antrr φ x A +∞ x B A *
25 pnfxr +∞ *
26 elioo2 A * +∞ * x A +∞ x A < x x < +∞
27 24 25 26 sylancl φ x A +∞ x B x A +∞ x A < x x < +∞
28 23 27 mpbid φ x A +∞ x B x A < x x < +∞
29 28 simp2d φ x A +∞ x B A < x
30 simpr φ x A +∞ x B x B
31 2 ad2antrr φ x A +∞ x B B
32 elioc2 A * B x A B x A < x x B
33 24 31 32 syl2anc φ x A +∞ x B x A B x A < x x B
34 22 29 30 33 mpbir3and φ x A +∞ x B x A B
35 34 orcd φ x A +∞ x B x A B x A B
36 21 ad2antlr φ x A +∞ ¬ x B x
37 3mix3 ¬ x B ¬ x ¬ A x ¬ x B
38 3ianor ¬ x A x x B ¬ x ¬ A x ¬ x B
39 37 38 sylibr ¬ x B ¬ x A x x B
40 39 adantl φ x A +∞ ¬ x B ¬ x A x x B
41 1 ad2antrr φ x A +∞ ¬ x B A
42 2 ad2antrr φ x A +∞ ¬ x B B
43 elicc2 A B x A B x A x x B
44 41 42 43 syl2anc φ x A +∞ ¬ x B x A B x A x x B
45 40 44 mtbird φ x A +∞ ¬ x B ¬ x A B
46 36 45 eldifd φ x A +∞ ¬ x B x A B
47 46 olcd φ x A +∞ ¬ x B x A B x A B
48 35 47 pm2.61dan φ x A +∞ x A B x A B
49 elun x A B A B x A B x A B
50 48 49 sylibr φ x A +∞ x A B A B
51 50 ralrimiva φ x A +∞ x A B A B
52 dfss3 A +∞ A B A B x A +∞ x A B A B
53 51 52 sylibr φ A +∞ A B A B
54 eqid topGen ran . = topGen ran .
55 54 ntrss topGen ran . Top A B A B topGen ran . A +∞ A B A B int topGen ran . A +∞ int topGen ran . A B A B
56 13 20 53 55 syl3anc φ int topGen ran . A +∞ int topGen ran . A B A B
57 25 a1i φ +∞ *
58 2 ltpnfd φ B < +∞
59 14 57 2 3 58 eliood φ B A +∞
60 iooretop A +∞ topGen ran .
61 isopn3i topGen ran . Top A +∞ topGen ran . int topGen ran . A +∞ = A +∞
62 13 60 61 sylancl φ int topGen ran . A +∞ = A +∞
63 59 62 eleqtrrd φ B int topGen ran . A +∞
64 56 63 sseldd φ B int topGen ran . A B A B
65 2 rexrd φ B *
66 1 2 3 ltled φ A B
67 ubicc2 A * B * A B B A B
68 14 65 66 67 syl3anc φ B A B
69 64 68 elind φ B int topGen ran . A B A B A B
70 iocssicc A B A B
71 70 a1i φ A B A B
72 eqid topGen ran . 𝑡 A B = topGen ran . 𝑡 A B
73 19 72 restntr topGen ran . Top A B A B A B int topGen ran . 𝑡 A B A B = int topGen ran . A B A B A B
74 13 7 71 73 syl3anc φ int topGen ran . 𝑡 A B A B = int topGen ran . A B A B A B
75 69 74 eleqtrrd φ B int topGen ran . 𝑡 A B A B
76 eqid topGen ran . = topGen ran .
77 10 76 rerest A B TopOpen fld 𝑡 A B = topGen ran . 𝑡 A B
78 7 77 syl φ TopOpen fld 𝑡 A B = topGen ran . 𝑡 A B
79 78 eqcomd φ topGen ran . 𝑡 A B = TopOpen fld 𝑡 A B
80 79 fveq2d φ int topGen ran . 𝑡 A B = int TopOpen fld 𝑡 A B
81 80 fveq1d φ int topGen ran . 𝑡 A B A B = int TopOpen fld 𝑡 A B A B
82 75 81 eleqtrd φ B int TopOpen fld 𝑡 A B A B
83 68 snssd φ B A B
84 ssequn2 B A B A B B = A B
85 83 84 sylib φ A B B = A B
86 85 eqcomd φ A B = A B B
87 86 oveq2d φ TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B B
88 87 fveq2d φ int TopOpen fld 𝑡 A B = int TopOpen fld 𝑡 A B B
89 ioounsn A * B * A < B A B B = A B
90 14 65 3 89 syl3anc φ A B B = A B
91 90 eqcomd φ A B = A B B
92 88 91 fveq12d φ int TopOpen fld 𝑡 A B A B = int TopOpen fld 𝑡 A B B A B B
93 82 92 eleqtrd φ B int TopOpen fld 𝑡 A B B A B B
94 4 6 9 10 11 93 limcres φ F A B lim B = F lim B