Metamath Proof Explorer


Theorem limcleqr

Description: If the left and the right limits are equal, the limit of the function exits and the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcleqr.k K = TopOpen fld
limcleqr.a φ A
limcleqr.j J = topGen ran .
limcleqr.f φ F : A
limcleqr.b φ B
limcleqr.l φ L F −∞ B lim B
limcleqr.r φ R F B +∞ lim B
limcleqr.leqr φ L = R
Assertion limcleqr φ L F lim B

Proof

Step Hyp Ref Expression
1 limcleqr.k K = TopOpen fld
2 limcleqr.a φ A
3 limcleqr.j J = topGen ran .
4 limcleqr.f φ F : A
5 limcleqr.b φ B
6 limcleqr.l φ L F −∞ B lim B
7 limcleqr.r φ R F B +∞ lim B
8 limcleqr.leqr φ L = R
9 limccl F −∞ B lim B
10 9 6 sselid φ L
11 simp-4r φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x a +
12 simplr φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x b +
13 11 12 ifcld φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x if a b a b +
14 nfv z φ x +
15 nfv z a +
16 14 15 nfan z φ x + a +
17 nfra1 z z A −∞ B z B z B < a F −∞ B z L < x
18 16 17 nfan z φ x + a + z A −∞ B z B z B < a F −∞ B z L < x
19 nfv z b +
20 18 19 nfan z φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b +
21 nfra1 z z A B +∞ z B z B < b F B +∞ z L < x
22 20 21 nfan z φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x
23 simp-6l φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z < B φ
24 23 3ad2antl1 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B φ
25 simpl2 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B z A
26 simpr φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B z < B
27 mnfxr −∞ *
28 27 a1i φ z A z < B −∞ *
29 5 rexrd φ B *
30 29 3ad2ant1 φ z A z < B B *
31 2 sselda φ z A z
32 31 3adant3 φ z A z < B z
33 32 mnfltd φ z A z < B −∞ < z
34 simp3 φ z A z < B z < B
35 28 30 32 33 34 eliood φ z A z < B z −∞ B
36 24 25 26 35 syl3anc φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B z −∞ B
37 fvres z −∞ B F −∞ B z = F z
38 37 oveq1d z −∞ B F −∞ B z L = F z L
39 38 eqcomd z −∞ B F z L = F −∞ B z L
40 39 fveq2d z −∞ B F z L = F −∞ B z L
41 36 40 syl φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B F z L = F −∞ B z L
42 simp-4r φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z < B z A −∞ B z B z B < a F −∞ B z L < x
43 42 3ad2antl1 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B z A −∞ B z B z B < a F −∞ B z L < x
44 25 36 elind φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B z A −∞ B
45 43 44 jca φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B z A −∞ B z B z B < a F −∞ B z L < x z A −∞ B
46 simpl3l φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B z B
47 11 adantr φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z < B a +
48 47 3ad2antl1 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B a +
49 12 adantr φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z < B b +
50 49 3ad2antl1 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B b +
51 simpl3r φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B z B < if a b a b
52 simpl1 φ a + b + z B < if a b a b z A φ
53 simprr φ a + b + z B < if a b a b z A z A
54 31 recnd φ z A z
55 5 recnd φ B
56 55 adantr φ z A B
57 54 56 subcld φ z A z B
58 57 abscld φ z A z B
59 52 53 58 syl2anc φ a + b + z B < if a b a b z A z B
60 rpre a + a
61 60 adantr a + b + a
62 rpre b + b
63 62 adantl a + b + b
64 61 63 ifcld a + b + if a b a b
65 64 3adant1 φ a + b + if a b a b
66 65 adantr φ a + b + z B < if a b a b z A if a b a b
67 61 3adant1 φ a + b + a
68 67 adantr φ a + b + z B < if a b a b z A a
69 simprl φ a + b + z B < if a b a b z A z B < if a b a b
70 63 3adant1 φ a + b + b
71 min1 a b if a b a b a
72 67 70 71 syl2anc φ a + b + if a b a b a
73 72 adantr φ a + b + z B < if a b a b z A if a b a b a
74 59 66 68 69 73 ltletrd φ a + b + z B < if a b a b z A z B < a
75 24 48 50 51 25 74 syl32anc φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B z B < a
76 46 75 jca φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B z B z B < a
77 rspa z A −∞ B z B z B < a F −∞ B z L < x z A −∞ B z B z B < a F −∞ B z L < x
78 45 76 77 sylc φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B F −∞ B z L < x
79 41 78 eqbrtrd φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b z < B F z L < x
80 simp-6l φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x ¬ z < B φ
81 80 3ad2antl1 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b ¬ z < B φ
82 81 5 syl φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b ¬ z < B B
83 simpl2 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b ¬ z < B z A
84 81 83 31 syl2anc φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b ¬ z < B z
85 id z B z B
86 85 necomd z B B z
87 86 ad2antrr z B z B < if a b a b ¬ z < B B z
88 87 3ad2antl3 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b ¬ z < B B z
89 simpr φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b ¬ z < B ¬ z < B
90 82 84 88 89 lttri5d φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b ¬ z < B B < z
91 simp-6l φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x B < z φ
92 91 3ad2antl1 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z φ
93 simpl2 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z z A
94 simpr φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z B < z
95 29 3ad2ant1 φ z A B < z B *
96 pnfxr +∞ *
97 96 a1i φ z A B < z +∞ *
98 31 3adant3 φ z A B < z z
99 simp3 φ z A B < z B < z
100 98 ltpnfd φ z A B < z z < +∞
101 95 97 98 99 100 eliood φ z A B < z z B +∞
102 92 93 94 101 syl3anc φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z z B +∞
103 fvres z B +∞ F B +∞ z = F z
104 103 eqcomd z B +∞ F z = F B +∞ z
105 104 fvoveq1d z B +∞ F z L = F B +∞ z L
106 102 105 syl φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z F z L = F B +∞ z L
107 simpl1r φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z z A B +∞ z B z B < b F B +∞ z L < x
108 93 102 elind φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z z A B +∞
109 107 108 jca φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z z A B +∞ z B z B < b F B +∞ z L < x z A B +∞
110 simpl3l φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z z B
111 11 adantr φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x B < z a +
112 111 3ad2antl1 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z a +
113 12 adantr φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x B < z b +
114 113 3ad2antl1 φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z b +
115 simpl3r φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z z B < if a b a b
116 70 adantr φ a + b + z B < if a b a b z A b
117 min2 a b if a b a b b
118 67 70 117 syl2anc φ a + b + if a b a b b
119 118 adantr φ a + b + z B < if a b a b z A if a b a b b
120 59 66 116 69 119 ltletrd φ a + b + z B < if a b a b z A z B < b
121 92 112 114 115 93 120 syl32anc φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z z B < b
122 110 121 jca φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z z B z B < b
123 rspa z A B +∞ z B z B < b F B +∞ z L < x z A B +∞ z B z B < b F B +∞ z L < x
124 109 122 123 sylc φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z F B +∞ z L < x
125 106 124 eqbrtrd φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b B < z F z L < x
126 90 125 syldan φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b ¬ z < B F z L < x
127 79 126 pm2.61dan φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b F z L < x
128 127 3exp φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b F z L < x
129 22 128 ralrimi φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x z A z B z B < if a b a b F z L < x
130 brimralrspcev if a b a b + z A z B z B < if a b a b F z L < x y + z A z B z B < y F z L < x
131 13 129 130 syl2anc φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x y + z A z B z B < y F z L < x
132 fresin F : A F B +∞ : A B +∞
133 4 132 syl φ F B +∞ : A B +∞
134 inss2 A B +∞ B +∞
135 ioosscn B +∞
136 134 135 sstri A B +∞
137 136 a1i φ A B +∞
138 133 137 55 ellimc3 φ R F B +∞ lim B R x + b + z A B +∞ z B z B < b F B +∞ z R < x
139 7 138 mpbid φ R x + b + z A B +∞ z B z B < b F B +∞ z R < x
140 139 simprd φ x + b + z A B +∞ z B z B < b F B +∞ z R < x
141 140 r19.21bi φ x + b + z A B +∞ z B z B < b F B +∞ z R < x
142 8 oveq2d φ F B +∞ z L = F B +∞ z R
143 142 fveq2d φ F B +∞ z L = F B +∞ z R
144 143 breq1d φ F B +∞ z L < x F B +∞ z R < x
145 144 imbi2d φ z B z B < b F B +∞ z L < x z B z B < b F B +∞ z R < x
146 145 rexralbidv φ b + z A B +∞ z B z B < b F B +∞ z L < x b + z A B +∞ z B z B < b F B +∞ z R < x
147 146 adantr φ x + b + z A B +∞ z B z B < b F B +∞ z L < x b + z A B +∞ z B z B < b F B +∞ z R < x
148 141 147 mpbird φ x + b + z A B +∞ z B z B < b F B +∞ z L < x
149 148 ad2antrr φ x + a + z A −∞ B z B z B < a F −∞ B z L < x b + z A B +∞ z B z B < b F B +∞ z L < x
150 131 149 r19.29a φ x + a + z A −∞ B z B z B < a F −∞ B z L < x y + z A z B z B < y F z L < x
151 fresin F : A F −∞ B : A −∞ B
152 4 151 syl φ F −∞ B : A −∞ B
153 inss2 A −∞ B −∞ B
154 ioossre −∞ B
155 153 154 sstri A −∞ B
156 ax-resscn
157 156 a1i φ
158 155 157 sstrid φ A −∞ B
159 152 158 55 ellimc3 φ L F −∞ B lim B L x + a + z A −∞ B z B z B < a F −∞ B z L < x
160 6 159 mpbid φ L x + a + z A −∞ B z B z B < a F −∞ B z L < x
161 160 simprd φ x + a + z A −∞ B z B z B < a F −∞ B z L < x
162 161 r19.21bi φ x + a + z A −∞ B z B z B < a F −∞ B z L < x
163 150 162 r19.29a φ x + y + z A z B z B < y F z L < x
164 163 ralrimiva φ x + y + z A z B z B < y F z L < x
165 2 156 sstrdi φ A
166 4 165 55 ellimc3 φ L F lim B L x + y + z A z B z B < y F z L < x
167 10 164 166 mpbir2and φ L F lim B