Metamath Proof Explorer


Theorem limclr

Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limclr.k K = TopOpen fld
limclr.a φ A
limclr.j J = topGen ran .
limclr.f φ F : A
limclr.lp1 φ B limPt J A −∞ B
limclr.lp2 φ B limPt J A B +∞
limclr.l φ L F −∞ B lim B
limclr.r φ R F B +∞ lim B
Assertion limclr φ F lim B L = R L = R L F lim B

Proof

Step Hyp Ref Expression
1 limclr.k K = TopOpen fld
2 limclr.a φ A
3 limclr.j J = topGen ran .
4 limclr.f φ F : A
5 limclr.lp1 φ B limPt J A −∞ B
6 limclr.lp2 φ B limPt J A B +∞
7 limclr.l φ L F −∞ B lim B
8 limclr.r φ R F B +∞ lim B
9 neqne ¬ L = R L R
10 2 adantr φ L R A
11 4 adantr φ L R F : A
12 5 adantr φ L R B limPt J A −∞ B
13 6 adantr φ L R B limPt J A B +∞
14 7 adantr φ L R L F −∞ B lim B
15 8 adantr φ L R R F B +∞ lim B
16 simpr φ L R L R
17 1 10 3 11 12 13 14 15 16 limclner φ L R F lim B =
18 nne ¬ F lim B F lim B =
19 17 18 sylibr φ L R ¬ F lim B
20 9 19 sylan2 φ ¬ L = R ¬ F lim B
21 20 ex φ ¬ L = R ¬ F lim B
22 21 con4d φ F lim B L = R
23 2 adantr φ L = R A
24 4 adantr φ L = R F : A
25 retop topGen ran . Top
26 3 25 eqeltri J Top
27 inss2 A −∞ B −∞ B
28 ioossre −∞ B
29 27 28 sstri A −∞ B
30 uniretop = topGen ran .
31 3 eqcomi topGen ran . = J
32 31 unieqi topGen ran . = J
33 30 32 eqtri = J
34 33 lpss J Top A −∞ B limPt J A −∞ B
35 26 29 34 mp2an limPt J A −∞ B
36 35 5 sseldi φ B
37 36 adantr φ L = R B
38 7 adantr φ L = R L F −∞ B lim B
39 8 adantr φ L = R R F B +∞ lim B
40 simpr φ L = R L = R
41 1 23 3 24 37 38 39 40 limcleqr φ L = R L F lim B
42 41 ne0d φ L = R F lim B
43 42 ex φ L = R F lim B
44 22 43 impbid φ F lim B L = R
45 41 ex φ L = R L F lim B
46 44 45 jca φ F lim B L = R L = R L F lim B