Step |
Hyp |
Ref |
Expression |
1 |
|
limclr.k |
|
2 |
|
limclr.a |
|
3 |
|
limclr.j |
|
4 |
|
limclr.f |
|
5 |
|
limclr.lp1 |
|
6 |
|
limclr.lp2 |
|
7 |
|
limclr.l |
|
8 |
|
limclr.r |
|
9 |
|
neqne |
|
10 |
2
|
adantr |
|
11 |
4
|
adantr |
|
12 |
5
|
adantr |
|
13 |
6
|
adantr |
|
14 |
7
|
adantr |
|
15 |
8
|
adantr |
|
16 |
|
simpr |
|
17 |
1 10 3 11 12 13 14 15 16
|
limclner |
|
18 |
|
nne |
|
19 |
17 18
|
sylibr |
|
20 |
9 19
|
sylan2 |
|
21 |
20
|
ex |
|
22 |
21
|
con4d |
|
23 |
2
|
adantr |
|
24 |
4
|
adantr |
|
25 |
|
retop |
|
26 |
3 25
|
eqeltri |
|
27 |
|
inss2 |
|
28 |
|
ioossre |
|
29 |
27 28
|
sstri |
|
30 |
|
uniretop |
|
31 |
3
|
eqcomi |
|
32 |
31
|
unieqi |
|
33 |
30 32
|
eqtri |
|
34 |
33
|
lpss |
|
35 |
26 29 34
|
mp2an |
|
36 |
35 5
|
sselid |
|
37 |
36
|
adantr |
|
38 |
7
|
adantr |
|
39 |
8
|
adantr |
|
40 |
|
simpr |
|
41 |
1 23 3 24 37 38 39 40
|
limcleqr |
|
42 |
41
|
ne0d |
|
43 |
42
|
ex |
|
44 |
22 43
|
impbid |
|
45 |
41
|
ex |
|
46 |
44 45
|
jca |
|