Metamath Proof Explorer


Theorem limcmo

Description: If B is a limit point of the domain of the function F , then there is at most one limit value of F at B . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcflf.f φ F : A
limcflf.a φ A
limcflf.b φ B limPt K A
limcflf.k K = TopOpen fld
Assertion limcmo φ * x x F lim B

Proof

Step Hyp Ref Expression
1 limcflf.f φ F : A
2 limcflf.a φ A
3 limcflf.b φ B limPt K A
4 limcflf.k K = TopOpen fld
5 4 cnfldhaus K Haus
6 eqid A B = A B
7 eqid nei K B 𝑡 A B = nei K B 𝑡 A B
8 1 2 3 4 6 7 limcflflem φ nei K B 𝑡 A B Fil A B
9 difss A B A
10 fssres F : A A B A F A B : A B
11 1 9 10 sylancl φ F A B : A B
12 4 cnfldtopon K TopOn
13 12 toponunii = K
14 13 hausflf K Haus nei K B 𝑡 A B Fil A B F A B : A B * x x K fLimf nei K B 𝑡 A B F A B
15 5 8 11 14 mp3an2i φ * x x K fLimf nei K B 𝑡 A B F A B
16 1 2 3 4 6 7 limcflf φ F lim B = K fLimf nei K B 𝑡 A B F A B
17 16 eleq2d φ x F lim B x K fLimf nei K B 𝑡 A B F A B
18 17 mobidv φ * x x F lim B * x x K fLimf nei K B 𝑡 A B F A B
19 15 18 mpbird φ * x x F lim B