Metamath Proof Explorer


Theorem limcmpt

Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcmpt.a φ A
limcmpt.b φ B
limcmpt.f φ z A D
limcmpt.j J = K 𝑡 A B
limcmpt.k K = TopOpen fld
Assertion limcmpt φ C z A D lim B z A B if z = B C D J CnP K B

Proof

Step Hyp Ref Expression
1 limcmpt.a φ A
2 limcmpt.b φ B
3 limcmpt.f φ z A D
4 limcmpt.j J = K 𝑡 A B
5 limcmpt.k K = TopOpen fld
6 nfcv _ y if z = B C z A D z
7 nfv z y = B
8 nfcv _ z C
9 nffvmpt1 _ z z A D y
10 7 8 9 nfif _ z if y = B C z A D y
11 eqeq1 z = y z = B y = B
12 fveq2 z = y z A D z = z A D y
13 11 12 ifbieq2d z = y if z = B C z A D z = if y = B C z A D y
14 6 10 13 cbvmpt z A B if z = B C z A D z = y A B if y = B C z A D y
15 3 fmpttd φ z A D : A
16 4 5 14 15 1 2 ellimc φ C z A D lim B z A B if z = B C z A D z J CnP K B
17 elun z A B z A z B
18 velsn z B z = B
19 18 orbi2i z A z B z A z = B
20 17 19 bitri z A B z A z = B
21 pm5.61 z A z = B ¬ z = B z A ¬ z = B
22 21 simplbi z A z = B ¬ z = B z A
23 20 22 sylanb z A B ¬ z = B z A
24 23 3 sylan2 φ z A B ¬ z = B D
25 eqid z A D = z A D
26 25 fvmpt2 z A D z A D z = D
27 23 24 26 syl2an2 φ z A B ¬ z = B z A D z = D
28 27 anassrs φ z A B ¬ z = B z A D z = D
29 28 ifeq2da φ z A B if z = B C z A D z = if z = B C D
30 29 mpteq2dva φ z A B if z = B C z A D z = z A B if z = B C D
31 30 eleq1d φ z A B if z = B C z A D z J CnP K B z A B if z = B C D J CnP K B
32 16 31 bitrd φ C z A D lim B z A B if z = B C D J CnP K B