Metamath Proof Explorer


Theorem limcmptdm

Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcmptdm.f F = x A B
limcmptdm.b φ x A B
limcmptdm.c φ C F lim D
Assertion limcmptdm φ A

Proof

Step Hyp Ref Expression
1 limcmptdm.f F = x A B
2 limcmptdm.b φ x A B
3 limcmptdm.c φ C F lim D
4 1 2 dmmptd φ dom F = A
5 limcrcl C F lim D F : dom F dom F D
6 3 5 syl φ F : dom F dom F D
7 6 simp2d φ dom F
8 4 7 eqsstrrd φ A