Metamath Proof Explorer


Theorem limcnlp

Description: If B is not a limit point of the domain of the function F , then every point is a limit of F at B . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limccl.f φ F : A
limccl.a φ A
limccl.b φ B
ellimc2.k K = TopOpen fld
limcnlp.n φ ¬ B limPt K A
Assertion limcnlp φ F lim B =

Proof

Step Hyp Ref Expression
1 limccl.f φ F : A
2 limccl.a φ A
3 limccl.b φ B
4 ellimc2.k K = TopOpen fld
5 limcnlp.n φ ¬ B limPt K A
6 1 2 3 4 ellimc2 φ x F lim B x u K x u v K B v F v A B u
7 4 cnfldtop K Top
8 2 adantr φ x A
9 8 ssdifssd φ x A B
10 4 cnfldtopon K TopOn
11 10 toponunii = K
12 11 clscld K Top A B cls K A B Clsd K
13 7 9 12 sylancr φ x cls K A B Clsd K
14 11 cldopn cls K A B Clsd K cls K A B K
15 13 14 syl φ x cls K A B K
16 11 islp K Top A B limPt K A B cls K A B
17 7 2 16 sylancr φ B limPt K A B cls K A B
18 5 17 mtbid φ ¬ B cls K A B
19 3 18 eldifd φ B cls K A B
20 19 adantr φ x B cls K A B
21 difin2 A B A B cls K A B = cls K A B A B
22 9 21 syl φ x A B cls K A B = cls K A B A B
23 11 sscls K Top A B A B cls K A B
24 7 9 23 sylancr φ x A B cls K A B
25 ssdif0 A B cls K A B A B cls K A B =
26 24 25 sylib φ x A B cls K A B =
27 22 26 eqtr3d φ x cls K A B A B =
28 27 imaeq2d φ x F cls K A B A B = F
29 ima0 F =
30 28 29 eqtrdi φ x F cls K A B A B =
31 0ss u
32 30 31 eqsstrdi φ x F cls K A B A B u
33 eleq2 v = cls K A B B v B cls K A B
34 ineq1 v = cls K A B v A B = cls K A B A B
35 34 imaeq2d v = cls K A B F v A B = F cls K A B A B
36 35 sseq1d v = cls K A B F v A B u F cls K A B A B u
37 33 36 anbi12d v = cls K A B B v F v A B u B cls K A B F cls K A B A B u
38 37 rspcev cls K A B K B cls K A B F cls K A B A B u v K B v F v A B u
39 15 20 32 38 syl12anc φ x v K B v F v A B u
40 39 a1d φ x x u v K B v F v A B u
41 40 ralrimivw φ x u K x u v K B v F v A B u
42 41 ex φ x u K x u v K B v F v A B u
43 42 pm4.71d φ x x u K x u v K B v F v A B u
44 6 43 bitr4d φ x F lim B x
45 44 eqrdv φ F lim B =