Step |
Hyp |
Ref |
Expression |
1 |
|
limccl.f |
|
2 |
|
limccl.a |
|
3 |
|
limccl.b |
|
4 |
|
ellimc2.k |
|
5 |
|
limcnlp.n |
|
6 |
1 2 3 4
|
ellimc2 |
|
7 |
4
|
cnfldtop |
|
8 |
2
|
adantr |
|
9 |
8
|
ssdifssd |
|
10 |
4
|
cnfldtopon |
|
11 |
10
|
toponunii |
|
12 |
11
|
clscld |
|
13 |
7 9 12
|
sylancr |
|
14 |
11
|
cldopn |
|
15 |
13 14
|
syl |
|
16 |
11
|
islp |
|
17 |
7 2 16
|
sylancr |
|
18 |
5 17
|
mtbid |
|
19 |
3 18
|
eldifd |
|
20 |
19
|
adantr |
|
21 |
|
difin2 |
|
22 |
9 21
|
syl |
|
23 |
11
|
sscls |
|
24 |
7 9 23
|
sylancr |
|
25 |
|
ssdif0 |
|
26 |
24 25
|
sylib |
|
27 |
22 26
|
eqtr3d |
|
28 |
27
|
imaeq2d |
|
29 |
|
ima0 |
|
30 |
28 29
|
eqtrdi |
|
31 |
|
0ss |
|
32 |
30 31
|
eqsstrdi |
|
33 |
|
eleq2 |
|
34 |
|
ineq1 |
|
35 |
34
|
imaeq2d |
|
36 |
35
|
sseq1d |
|
37 |
33 36
|
anbi12d |
|
38 |
37
|
rspcev |
|
39 |
15 20 32 38
|
syl12anc |
|
40 |
39
|
a1d |
|
41 |
40
|
ralrimivw |
|
42 |
41
|
ex |
|
43 |
42
|
pm4.71d |
|
44 |
6 43
|
bitr4d |
|
45 |
44
|
eqrdv |
|