Database
BASIC REAL AND COMPLEX ANALYSIS
Derivatives
Real and complex differentiation
Derivatives of functions of one complex or real variable
limcrcl
Next ⟩
limccl
Metamath Proof Explorer
Ascii
Unicode
Theorem
limcrcl
Description:
Reverse closure for the limit operator.
(Contributed by
Mario Carneiro
, 28-Dec-2016)
Ref
Expression
Assertion
limcrcl
⊢
C
∈
F
lim
ℂ
B
→
F
:
dom
⁡
F
⟶
ℂ
∧
dom
⁡
F
⊆
ℂ
∧
B
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
df-limc
⊢
lim
ℂ
=
f
∈
ℂ
↑
𝑝𝑚
ℂ
,
x
∈
ℂ
⟼
y
|
[
˙
TopOpen
⁡
ℂ
fld
/
j
]
˙
z
∈
dom
⁡
f
∪
x
⟼
if
z
=
x
y
f
⁡
z
∈
j
↾
𝑡
dom
⁡
f
∪
x
CnP
j
⁡
x
2
1
elmpocl
⊢
C
∈
F
lim
ℂ
B
→
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
B
∈
ℂ
3
cnex
⊢
ℂ
∈
V
4
3
3
elpm2
⊢
F
∈
ℂ
↑
𝑝𝑚
ℂ
↔
F
:
dom
⁡
F
⟶
ℂ
∧
dom
⁡
F
⊆
ℂ
5
4
anbi1i
⊢
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
B
∈
ℂ
↔
F
:
dom
⁡
F
⟶
ℂ
∧
dom
⁡
F
⊆
ℂ
∧
B
∈
ℂ
6
df-3an
⊢
F
:
dom
⁡
F
⟶
ℂ
∧
dom
⁡
F
⊆
ℂ
∧
B
∈
ℂ
↔
F
:
dom
⁡
F
⟶
ℂ
∧
dom
⁡
F
⊆
ℂ
∧
B
∈
ℂ
7
5
6
bitr4i
⊢
F
∈
ℂ
↑
𝑝𝑚
ℂ
∧
B
∈
ℂ
↔
F
:
dom
⁡
F
⟶
ℂ
∧
dom
⁡
F
⊆
ℂ
∧
B
∈
ℂ
8
2
7
sylib
⊢
C
∈
F
lim
ℂ
B
→
F
:
dom
⁡
F
⟶
ℂ
∧
dom
⁡
F
⊆
ℂ
∧
B
∈
ℂ