Metamath Proof Explorer


Theorem limcrcl

Description: Reverse closure for the limit operator. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Assertion limcrcl C F lim B F : dom F dom F B

Proof

Step Hyp Ref Expression
1 df-limc lim = f 𝑝𝑚 , x y | [˙ TopOpen fld / j]˙ z dom f x if z = x y f z j 𝑡 dom f x CnP j x
2 1 elmpocl C F lim B F 𝑝𝑚 B
3 cnex V
4 3 3 elpm2 F 𝑝𝑚 F : dom F dom F
5 4 anbi1i F 𝑝𝑚 B F : dom F dom F B
6 df-3an F : dom F dom F B F : dom F dom F B
7 5 6 bitr4i F 𝑝𝑚 B F : dom F dom F B
8 2 7 sylib C F lim B F : dom F dom F B