Step |
Hyp |
Ref |
Expression |
1 |
|
limcres.f |
|
2 |
|
limcres.c |
|
3 |
|
limcres.a |
|
4 |
|
limcres.k |
|
5 |
|
limcres.j |
|
6 |
|
limcres.i |
|
7 |
|
limcrcl |
|
8 |
7
|
simp3d |
|
9 |
|
limccl |
|
10 |
9
|
sseli |
|
11 |
8 10
|
jca |
|
12 |
11
|
a1i |
|
13 |
|
limcrcl |
|
14 |
13
|
simp3d |
|
15 |
|
limccl |
|
16 |
15
|
sseli |
|
17 |
14 16
|
jca |
|
18 |
17
|
a1i |
|
19 |
4
|
cnfldtopon |
|
20 |
3
|
adantr |
|
21 |
|
simprl |
|
22 |
21
|
snssd |
|
23 |
20 22
|
unssd |
|
24 |
|
resttopon |
|
25 |
19 23 24
|
sylancr |
|
26 |
5 25
|
eqeltrid |
|
27 |
|
topontop |
|
28 |
26 27
|
syl |
|
29 |
2
|
adantr |
|
30 |
|
unss1 |
|
31 |
29 30
|
syl |
|
32 |
|
toponuni |
|
33 |
26 32
|
syl |
|
34 |
31 33
|
sseqtrd |
|
35 |
6
|
adantr |
|
36 |
|
elun |
|
37 |
|
simplrr |
|
38 |
1
|
adantr |
|
39 |
38
|
ffvelrnda |
|
40 |
37 39
|
ifcld |
|
41 |
|
elsni |
|
42 |
41
|
adantl |
|
43 |
42
|
iftrued |
|
44 |
|
simplrr |
|
45 |
43 44
|
eqeltrd |
|
46 |
40 45
|
jaodan |
|
47 |
36 46
|
sylan2b |
|
48 |
47
|
fmpttd |
|
49 |
33
|
feq2d |
|
50 |
48 49
|
mpbid |
|
51 |
|
eqid |
|
52 |
19
|
toponunii |
|
53 |
51 52
|
cnprest |
|
54 |
28 34 35 50 53
|
syl22anc |
|
55 |
|
eqid |
|
56 |
5 4 55 38 20 21
|
ellimc |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
38 29
|
fssresd |
|
60 |
29 20
|
sstrd |
|
61 |
57 4 58 59 60 21
|
ellimc |
|
62 |
|
elun |
|
63 |
|
velsn |
|
64 |
63
|
orbi2i |
|
65 |
62 64
|
bitri |
|
66 |
|
pm5.61 |
|
67 |
|
fvres |
|
68 |
67
|
adantr |
|
69 |
66 68
|
sylbi |
|
70 |
69
|
ifeq2da |
|
71 |
65 70
|
sylbi |
|
72 |
71
|
mpteq2ia |
|
73 |
31
|
resmptd |
|
74 |
72 73
|
eqtr4id |
|
75 |
5
|
oveq1i |
|
76 |
|
cnex |
|
77 |
76
|
ssex |
|
78 |
23 77
|
syl |
|
79 |
|
restabs |
|
80 |
19 31 78 79
|
mp3an2i |
|
81 |
75 80
|
eqtr2id |
|
82 |
81
|
oveq1d |
|
83 |
82
|
fveq1d |
|
84 |
74 83
|
eleq12d |
|
85 |
61 84
|
bitrd |
|
86 |
54 56 85
|
3bitr4rd |
|
87 |
86
|
ex |
|
88 |
12 18 87
|
pm5.21ndd |
|
89 |
88
|
eqrdv |
|