Metamath Proof Explorer


Theorem limcres

Description: If B is an interior point of C u. { B } relative to the domain A , then a limit point of ` F |`C extends to a limit of F . (Contributed by Mario Carneiro, 27-Dec-2016)

Ref Expression
Hypotheses limcres.f φ F : A
limcres.c φ C A
limcres.a φ A
limcres.k K = TopOpen fld
limcres.j J = K 𝑡 A B
limcres.i φ B int J C B
Assertion limcres φ F C lim B = F lim B

Proof

Step Hyp Ref Expression
1 limcres.f φ F : A
2 limcres.c φ C A
3 limcres.a φ A
4 limcres.k K = TopOpen fld
5 limcres.j J = K 𝑡 A B
6 limcres.i φ B int J C B
7 limcrcl x F C lim B F C : dom F C dom F C B
8 7 simp3d x F C lim B B
9 limccl F C lim B
10 9 sseli x F C lim B x
11 8 10 jca x F C lim B B x
12 11 a1i φ x F C lim B B x
13 limcrcl x F lim B F : dom F dom F B
14 13 simp3d x F lim B B
15 limccl F lim B
16 15 sseli x F lim B x
17 14 16 jca x F lim B B x
18 17 a1i φ x F lim B B x
19 4 cnfldtopon K TopOn
20 3 adantr φ B x A
21 simprl φ B x B
22 21 snssd φ B x B
23 20 22 unssd φ B x A B
24 resttopon K TopOn A B K 𝑡 A B TopOn A B
25 19 23 24 sylancr φ B x K 𝑡 A B TopOn A B
26 5 25 eqeltrid φ B x J TopOn A B
27 topontop J TopOn A B J Top
28 26 27 syl φ B x J Top
29 2 adantr φ B x C A
30 unss1 C A C B A B
31 29 30 syl φ B x C B A B
32 toponuni J TopOn A B A B = J
33 26 32 syl φ B x A B = J
34 31 33 sseqtrd φ B x C B J
35 6 adantr φ B x B int J C B
36 elun z A B z A z B
37 simplrr φ B x z A x
38 1 adantr φ B x F : A
39 38 ffvelrnda φ B x z A F z
40 37 39 ifcld φ B x z A if z = B x F z
41 elsni z B z = B
42 41 adantl φ B x z B z = B
43 42 iftrued φ B x z B if z = B x F z = x
44 simplrr φ B x z B x
45 43 44 eqeltrd φ B x z B if z = B x F z
46 40 45 jaodan φ B x z A z B if z = B x F z
47 36 46 sylan2b φ B x z A B if z = B x F z
48 47 fmpttd φ B x z A B if z = B x F z : A B
49 33 feq2d φ B x z A B if z = B x F z : A B z A B if z = B x F z : J
50 48 49 mpbid φ B x z A B if z = B x F z : J
51 eqid J = J
52 19 toponunii = K
53 51 52 cnprest J Top C B J B int J C B z A B if z = B x F z : J z A B if z = B x F z J CnP K B z A B if z = B x F z C B J 𝑡 C B CnP K B
54 28 34 35 50 53 syl22anc φ B x z A B if z = B x F z J CnP K B z A B if z = B x F z C B J 𝑡 C B CnP K B
55 eqid z A B if z = B x F z = z A B if z = B x F z
56 5 4 55 38 20 21 ellimc φ B x x F lim B z A B if z = B x F z J CnP K B
57 eqid K 𝑡 C B = K 𝑡 C B
58 eqid z C B if z = B x F C z = z C B if z = B x F C z
59 38 29 fssresd φ B x F C : C
60 29 20 sstrd φ B x C
61 57 4 58 59 60 21 ellimc φ B x x F C lim B z C B if z = B x F C z K 𝑡 C B CnP K B
62 elun z C B z C z B
63 velsn z B z = B
64 63 orbi2i z C z B z C z = B
65 62 64 bitri z C B z C z = B
66 pm5.61 z C z = B ¬ z = B z C ¬ z = B
67 fvres z C F C z = F z
68 67 adantr z C ¬ z = B F C z = F z
69 66 68 sylbi z C z = B ¬ z = B F C z = F z
70 69 ifeq2da z C z = B if z = B x F C z = if z = B x F z
71 65 70 sylbi z C B if z = B x F C z = if z = B x F z
72 71 mpteq2ia z C B if z = B x F C z = z C B if z = B x F z
73 31 resmptd φ B x z A B if z = B x F z C B = z C B if z = B x F z
74 72 73 eqtr4id φ B x z C B if z = B x F C z = z A B if z = B x F z C B
75 5 oveq1i J 𝑡 C B = K 𝑡 A B 𝑡 C B
76 cnex V
77 76 ssex A B A B V
78 23 77 syl φ B x A B V
79 restabs K TopOn C B A B A B V K 𝑡 A B 𝑡 C B = K 𝑡 C B
80 19 31 78 79 mp3an2i φ B x K 𝑡 A B 𝑡 C B = K 𝑡 C B
81 75 80 syl5req φ B x K 𝑡 C B = J 𝑡 C B
82 81 oveq1d φ B x K 𝑡 C B CnP K = J 𝑡 C B CnP K
83 82 fveq1d φ B x K 𝑡 C B CnP K B = J 𝑡 C B CnP K B
84 74 83 eleq12d φ B x z C B if z = B x F C z K 𝑡 C B CnP K B z A B if z = B x F z C B J 𝑡 C B CnP K B
85 61 84 bitrd φ B x x F C lim B z A B if z = B x F z C B J 𝑡 C B CnP K B
86 54 56 85 3bitr4rd φ B x x F C lim B x F lim B
87 86 ex φ B x x F C lim B x F lim B
88 12 18 87 pm5.21ndd φ x F C lim B x F lim B
89 88 eqrdv φ F C lim B = F lim B