Metamath Proof Explorer


Theorem limcresi

Description: Any limit of F is also a limit of the restriction of F . (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Assertion limcresi F lim B F C lim B

Proof

Step Hyp Ref Expression
1 limcrcl x F lim B F : dom F dom F B
2 1 simp1d x F lim B F : dom F
3 1 simp2d x F lim B dom F
4 1 simp3d x F lim B B
5 eqid TopOpen fld = TopOpen fld
6 2 3 4 5 ellimc2 x F lim B x F lim B x u TopOpen fld x u v TopOpen fld B v F v dom F B u
7 6 ibi x F lim B x u TopOpen fld x u v TopOpen fld B v F v dom F B u
8 inss2 v dom F C B dom F C B
9 difss dom F C B dom F C
10 inss2 dom F C C
11 9 10 sstri dom F C B C
12 8 11 sstri v dom F C B C
13 resima2 v dom F C B C F C v dom F C B = F v dom F C B
14 12 13 ax-mp F C v dom F C B = F v dom F C B
15 inss1 dom F C dom F
16 ssdif dom F C dom F dom F C B dom F B
17 15 16 ax-mp dom F C B dom F B
18 sslin dom F C B dom F B v dom F C B v dom F B
19 imass2 v dom F C B v dom F B F v dom F C B F v dom F B
20 17 18 19 mp2b F v dom F C B F v dom F B
21 14 20 eqsstri F C v dom F C B F v dom F B
22 sstr F C v dom F C B F v dom F B F v dom F B u F C v dom F C B u
23 21 22 mpan F v dom F B u F C v dom F C B u
24 23 anim2i B v F v dom F B u B v F C v dom F C B u
25 24 reximi v TopOpen fld B v F v dom F B u v TopOpen fld B v F C v dom F C B u
26 25 imim2i x u v TopOpen fld B v F v dom F B u x u v TopOpen fld B v F C v dom F C B u
27 26 ralimi u TopOpen fld x u v TopOpen fld B v F v dom F B u u TopOpen fld x u v TopOpen fld B v F C v dom F C B u
28 27 anim2i x u TopOpen fld x u v TopOpen fld B v F v dom F B u x u TopOpen fld x u v TopOpen fld B v F C v dom F C B u
29 7 28 syl x F lim B x u TopOpen fld x u v TopOpen fld B v F C v dom F C B u
30 fresin F : dom F F C : dom F C
31 2 30 syl x F lim B F C : dom F C
32 15 3 sstrid x F lim B dom F C
33 31 32 4 5 ellimc2 x F lim B x F C lim B x u TopOpen fld x u v TopOpen fld B v F C v dom F C B u
34 29 33 mpbird x F lim B x F C lim B
35 34 ssriv F lim B F C lim B