Step |
Hyp |
Ref |
Expression |
1 |
|
limcresioolb.f |
|
2 |
|
limcresioolb.b |
|
3 |
|
limcresioolb.c |
|
4 |
|
limcresioolb.bltc |
|
5 |
|
limcresioolb.bcss |
|
6 |
|
limcresioolb.d |
|
7 |
|
limcresioolb.cled |
|
8 |
|
iooss2 |
|
9 |
6 7 8
|
syl2anc |
|
10 |
9
|
resabs1d |
|
11 |
10
|
eqcomd |
|
12 |
11
|
oveq1d |
|
13 |
|
fresin |
|
14 |
1 13
|
syl |
|
15 |
5 9
|
ssind |
|
16 |
|
inss2 |
|
17 |
|
ioosscn |
|
18 |
16 17
|
sstri |
|
19 |
18
|
a1i |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
2
|
rexrd |
|
23 |
|
lbico1 |
|
24 |
22 3 4 23
|
syl3anc |
|
25 |
|
snunioo1 |
|
26 |
22 3 4 25
|
syl3anc |
|
27 |
26
|
fveq2d |
|
28 |
20
|
cnfldtop |
|
29 |
|
ovex |
|
30 |
29
|
inex2 |
|
31 |
|
snex |
|
32 |
30 31
|
unex |
|
33 |
|
resttop |
|
34 |
28 32 33
|
mp2an |
|
35 |
34
|
a1i |
|
36 |
|
mnfxr |
|
37 |
36
|
a1i |
|
38 |
3
|
adantr |
|
39 |
|
icossre |
|
40 |
2 3 39
|
syl2anc |
|
41 |
40
|
sselda |
|
42 |
41
|
mnfltd |
|
43 |
22
|
adantr |
|
44 |
|
simpr |
|
45 |
|
icoltub |
|
46 |
43 38 44 45
|
syl3anc |
|
47 |
37 38 41 42 46
|
eliood |
|
48 |
|
simpr |
|
49 |
|
snidg |
|
50 |
|
elun2 |
|
51 |
2 49 50
|
3syl |
|
52 |
51
|
adantr |
|
53 |
48 52
|
eqeltrd |
|
54 |
53
|
adantlr |
|
55 |
|
simpll |
|
56 |
43
|
adantr |
|
57 |
38
|
adantr |
|
58 |
41
|
adantr |
|
59 |
2
|
ad2antrr |
|
60 |
|
icogelb |
|
61 |
43 38 44 60
|
syl3anc |
|
62 |
61
|
adantr |
|
63 |
|
neqne |
|
64 |
63
|
adantl |
|
65 |
59 58 62 64
|
leneltd |
|
66 |
46
|
adantr |
|
67 |
56 57 58 65 66
|
eliood |
|
68 |
15
|
sselda |
|
69 |
|
elun1 |
|
70 |
68 69
|
syl |
|
71 |
55 67 70
|
syl2anc |
|
72 |
54 71
|
pm2.61dan |
|
73 |
47 72
|
elind |
|
74 |
24
|
adantr |
|
75 |
48 74
|
eqeltrd |
|
76 |
75
|
adantlr |
|
77 |
|
ioossico |
|
78 |
22
|
ad2antrr |
|
79 |
3
|
ad2antrr |
|
80 |
|
elinel1 |
|
81 |
80
|
elioored |
|
82 |
81
|
ad2antlr |
|
83 |
6
|
ad2antrr |
|
84 |
|
elinel2 |
|
85 |
|
id |
|
86 |
|
velsn |
|
87 |
85 86
|
sylnibr |
|
88 |
|
elunnel2 |
|
89 |
84 87 88
|
syl2an |
|
90 |
16 89
|
sselid |
|
91 |
90
|
adantll |
|
92 |
|
ioogtlb |
|
93 |
78 83 91 92
|
syl3anc |
|
94 |
36
|
a1i |
|
95 |
3
|
adantr |
|
96 |
80
|
adantl |
|
97 |
|
iooltub |
|
98 |
94 95 96 97
|
syl3anc |
|
99 |
98
|
adantr |
|
100 |
78 79 82 93 99
|
eliood |
|
101 |
77 100
|
sselid |
|
102 |
76 101
|
pm2.61dan |
|
103 |
73 102
|
impbida |
|
104 |
103
|
eqrdv |
|
105 |
|
retop |
|
106 |
105
|
a1i |
|
107 |
32
|
a1i |
|
108 |
|
iooretop |
|
109 |
108
|
a1i |
|
110 |
|
elrestr |
|
111 |
106 107 109 110
|
syl3anc |
|
112 |
104 111
|
eqeltrd |
|
113 |
20
|
tgioo2 |
|
114 |
113
|
oveq1i |
|
115 |
28
|
a1i |
|
116 |
|
ioossre |
|
117 |
16 116
|
sstri |
|
118 |
117
|
a1i |
|
119 |
2
|
snssd |
|
120 |
118 119
|
unssd |
|
121 |
|
reex |
|
122 |
121
|
a1i |
|
123 |
|
restabs |
|
124 |
115 120 122 123
|
syl3anc |
|
125 |
114 124
|
eqtrid |
|
126 |
112 125
|
eleqtrd |
|
127 |
|
isopn3i |
|
128 |
35 126 127
|
syl2anc |
|
129 |
27 128
|
eqtr2d |
|
130 |
24 129
|
eleqtrd |
|
131 |
14 15 19 20 21 130
|
limcres |
|
132 |
12 131
|
eqtrd |
|