Metamath Proof Explorer


Theorem limcresioolb

Description: The right limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcresioolb.f φ F : A
limcresioolb.b φ B
limcresioolb.c φ C *
limcresioolb.bltc φ B < C
limcresioolb.bcss φ B C A
limcresioolb.d φ D *
limcresioolb.cled φ C D
Assertion limcresioolb φ F B C lim B = F B D lim B

Proof

Step Hyp Ref Expression
1 limcresioolb.f φ F : A
2 limcresioolb.b φ B
3 limcresioolb.c φ C *
4 limcresioolb.bltc φ B < C
5 limcresioolb.bcss φ B C A
6 limcresioolb.d φ D *
7 limcresioolb.cled φ C D
8 iooss2 D * C D B C B D
9 6 7 8 syl2anc φ B C B D
10 9 resabs1d φ F B D B C = F B C
11 10 eqcomd φ F B C = F B D B C
12 11 oveq1d φ F B C lim B = F B D B C lim B
13 fresin F : A F B D : A B D
14 1 13 syl φ F B D : A B D
15 5 9 ssind φ B C A B D
16 inss2 A B D B D
17 ioosscn B D
18 16 17 sstri A B D
19 18 a1i φ A B D
20 eqid TopOpen fld = TopOpen fld
21 eqid TopOpen fld 𝑡 A B D B = TopOpen fld 𝑡 A B D B
22 2 rexrd φ B *
23 lbico1 B * C * B < C B B C
24 22 3 4 23 syl3anc φ B B C
25 snunioo1 B * C * B < C B C B = B C
26 22 3 4 25 syl3anc φ B C B = B C
27 26 fveq2d φ int TopOpen fld 𝑡 A B D B B C B = int TopOpen fld 𝑡 A B D B B C
28 20 cnfldtop TopOpen fld Top
29 ovex B D V
30 29 inex2 A B D V
31 snex B V
32 30 31 unex A B D B V
33 resttop TopOpen fld Top A B D B V TopOpen fld 𝑡 A B D B Top
34 28 32 33 mp2an TopOpen fld 𝑡 A B D B Top
35 34 a1i φ TopOpen fld 𝑡 A B D B Top
36 mnfxr −∞ *
37 36 a1i φ x B C −∞ *
38 3 adantr φ x B C C *
39 icossre B C * B C
40 2 3 39 syl2anc φ B C
41 40 sselda φ x B C x
42 41 mnfltd φ x B C −∞ < x
43 22 adantr φ x B C B *
44 simpr φ x B C x B C
45 icoltub B * C * x B C x < C
46 43 38 44 45 syl3anc φ x B C x < C
47 37 38 41 42 46 eliood φ x B C x −∞ C
48 simpr φ x = B x = B
49 snidg B B B
50 elun2 B B B A B D B
51 2 49 50 3syl φ B A B D B
52 51 adantr φ x = B B A B D B
53 48 52 eqeltrd φ x = B x A B D B
54 53 adantlr φ x B C x = B x A B D B
55 simpll φ x B C ¬ x = B φ
56 43 adantr φ x B C ¬ x = B B *
57 38 adantr φ x B C ¬ x = B C *
58 41 adantr φ x B C ¬ x = B x
59 2 ad2antrr φ x B C ¬ x = B B
60 icogelb B * C * x B C B x
61 43 38 44 60 syl3anc φ x B C B x
62 61 adantr φ x B C ¬ x = B B x
63 neqne ¬ x = B x B
64 63 adantl φ x B C ¬ x = B x B
65 59 58 62 64 leneltd φ x B C ¬ x = B B < x
66 46 adantr φ x B C ¬ x = B x < C
67 56 57 58 65 66 eliood φ x B C ¬ x = B x B C
68 15 sselda φ x B C x A B D
69 elun1 x A B D x A B D B
70 68 69 syl φ x B C x A B D B
71 55 67 70 syl2anc φ x B C ¬ x = B x A B D B
72 54 71 pm2.61dan φ x B C x A B D B
73 47 72 elind φ x B C x −∞ C A B D B
74 24 adantr φ x = B B B C
75 48 74 eqeltrd φ x = B x B C
76 75 adantlr φ x −∞ C A B D B x = B x B C
77 ioossico B C B C
78 22 ad2antrr φ x −∞ C A B D B ¬ x = B B *
79 3 ad2antrr φ x −∞ C A B D B ¬ x = B C *
80 elinel1 x −∞ C A B D B x −∞ C
81 80 elioored x −∞ C A B D B x
82 81 ad2antlr φ x −∞ C A B D B ¬ x = B x
83 6 ad2antrr φ x −∞ C A B D B ¬ x = B D *
84 elinel2 x −∞ C A B D B x A B D B
85 id ¬ x = B ¬ x = B
86 velsn x B x = B
87 85 86 sylnibr ¬ x = B ¬ x B
88 elunnel2 x A B D B ¬ x B x A B D
89 84 87 88 syl2an x −∞ C A B D B ¬ x = B x A B D
90 16 89 sseldi x −∞ C A B D B ¬ x = B x B D
91 90 adantll φ x −∞ C A B D B ¬ x = B x B D
92 ioogtlb B * D * x B D B < x
93 78 83 91 92 syl3anc φ x −∞ C A B D B ¬ x = B B < x
94 36 a1i φ x −∞ C A B D B −∞ *
95 3 adantr φ x −∞ C A B D B C *
96 80 adantl φ x −∞ C A B D B x −∞ C
97 iooltub −∞ * C * x −∞ C x < C
98 94 95 96 97 syl3anc φ x −∞ C A B D B x < C
99 98 adantr φ x −∞ C A B D B ¬ x = B x < C
100 78 79 82 93 99 eliood φ x −∞ C A B D B ¬ x = B x B C
101 77 100 sseldi φ x −∞ C A B D B ¬ x = B x B C
102 76 101 pm2.61dan φ x −∞ C A B D B x B C
103 73 102 impbida φ x B C x −∞ C A B D B
104 103 eqrdv φ B C = −∞ C A B D B
105 retop topGen ran . Top
106 105 a1i φ topGen ran . Top
107 32 a1i φ A B D B V
108 iooretop −∞ C topGen ran .
109 108 a1i φ −∞ C topGen ran .
110 elrestr topGen ran . Top A B D B V −∞ C topGen ran . −∞ C A B D B topGen ran . 𝑡 A B D B
111 106 107 109 110 syl3anc φ −∞ C A B D B topGen ran . 𝑡 A B D B
112 104 111 eqeltrd φ B C topGen ran . 𝑡 A B D B
113 20 tgioo2 topGen ran . = TopOpen fld 𝑡
114 113 oveq1i topGen ran . 𝑡 A B D B = TopOpen fld 𝑡 𝑡 A B D B
115 28 a1i φ TopOpen fld Top
116 ioossre B D
117 16 116 sstri A B D
118 117 a1i φ A B D
119 2 snssd φ B
120 118 119 unssd φ A B D B
121 reex V
122 121 a1i φ V
123 restabs TopOpen fld Top A B D B V TopOpen fld 𝑡 𝑡 A B D B = TopOpen fld 𝑡 A B D B
124 115 120 122 123 syl3anc φ TopOpen fld 𝑡 𝑡 A B D B = TopOpen fld 𝑡 A B D B
125 114 124 syl5eq φ topGen ran . 𝑡 A B D B = TopOpen fld 𝑡 A B D B
126 112 125 eleqtrd φ B C TopOpen fld 𝑡 A B D B
127 isopn3i TopOpen fld 𝑡 A B D B Top B C TopOpen fld 𝑡 A B D B int TopOpen fld 𝑡 A B D B B C = B C
128 35 126 127 syl2anc φ int TopOpen fld 𝑡 A B D B B C = B C
129 27 128 eqtr2d φ B C = int TopOpen fld 𝑡 A B D B B C B
130 24 129 eleqtrd φ B int TopOpen fld 𝑡 A B D B B C B
131 14 15 19 20 21 130 limcres φ F B D B C lim B = F B D lim B
132 12 131 eqtrd φ F B C lim B = F B D lim B