Metamath Proof Explorer


Theorem limcresiooub

Description: The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcresiooub.f φF:A
limcresiooub.b φB*
limcresiooub.c φC
limcresiooub.bltc φB<C
limcresiooub.bcss φBCA
limcresiooub.d φD*
limcresiooub.cled φDB
Assertion limcresiooub φFBClimC=FDClimC

Proof

Step Hyp Ref Expression
1 limcresiooub.f φF:A
2 limcresiooub.b φB*
3 limcresiooub.c φC
4 limcresiooub.bltc φB<C
5 limcresiooub.bcss φBCA
6 limcresiooub.d φD*
7 limcresiooub.cled φDB
8 iooss1 D*DBBCDC
9 6 7 8 syl2anc φBCDC
10 9 resabs1d φFDCBC=FBC
11 10 eqcomd φFBC=FDCBC
12 11 oveq1d φFBClimC=FDCBClimC
13 fresin F:AFDC:ADC
14 1 13 syl φFDC:ADC
15 5 9 ssind φBCADC
16 inss2 ADCDC
17 ioosscn DC
18 16 17 sstri ADC
19 18 a1i φADC
20 eqid TopOpenfld=TopOpenfld
21 eqid TopOpenfld𝑡ADCC=TopOpenfld𝑡ADCC
22 3 rexrd φC*
23 ubioc1 B*C*B<CCBC
24 2 22 4 23 syl3anc φCBC
25 ioounsn B*C*B<CBCC=BC
26 2 22 4 25 syl3anc φBCC=BC
27 26 fveq2d φintTopOpenfld𝑡ADCCBCC=intTopOpenfld𝑡ADCCBC
28 20 cnfldtop TopOpenfldTop
29 ovex DCV
30 29 inex2 ADCV
31 snex CV
32 30 31 unex ADCCV
33 resttop TopOpenfldTopADCCVTopOpenfld𝑡ADCCTop
34 28 32 33 mp2an TopOpenfld𝑡ADCCTop
35 34 a1i φTopOpenfld𝑡ADCCTop
36 pnfxr +∞*
37 36 a1i φ+∞*
38 2 xrleidd φBB
39 3 ltpnfd φC<+∞
40 iocssioo B*+∞*BBC<+∞BCB+∞
41 2 37 38 39 40 syl22anc φBCB+∞
42 simpr φx=Cx=C
43 snidg CCC
44 elun2 CCCADCC
45 3 43 44 3syl φCADCC
46 45 adantr φx=CCADCC
47 42 46 eqeltrd φx=CxADCC
48 47 adantlr φxBCx=CxADCC
49 simpll φxBC¬x=Cφ
50 2 adantr φxBCB*
51 50 adantr φxBC¬x=CB*
52 22 adantr φxBCC*
53 52 adantr φxBC¬x=CC*
54 iocssre B*CBC
55 2 3 54 syl2anc φBC
56 55 sselda φxBCx
57 56 adantr φxBC¬x=Cx
58 simpr φxBCxBC
59 iocgtlb B*C*xBCB<x
60 50 52 58 59 syl3anc φxBCB<x
61 60 adantr φxBC¬x=CB<x
62 3 ad2antrr φxBC¬x=CC
63 iocleub B*C*xBCxC
64 50 52 58 63 syl3anc φxBCxC
65 64 adantr φxBC¬x=CxC
66 neqne ¬x=CxC
67 66 adantl φxBC¬x=CxC
68 67 necomd φxBC¬x=CCx
69 57 62 65 68 leneltd φxBC¬x=Cx<C
70 51 53 57 61 69 eliood φxBC¬x=CxBC
71 15 sselda φxBCxADC
72 elun1 xADCxADCC
73 71 72 syl φxBCxADCC
74 49 70 73 syl2anc φxBC¬x=CxADCC
75 48 74 pm2.61dan φxBCxADCC
76 75 ralrimiva φxBCxADCC
77 dfss3 BCADCCxBCxADCC
78 76 77 sylibr φBCADCC
79 41 78 ssind φBCB+∞ADCC
80 79 sseld φxBCxB+∞ADCC
81 24 adantr φx=CCBC
82 42 81 eqeltrd φx=CxBC
83 82 adantlr φxB+∞ADCCx=CxBC
84 ioossioc BCBC
85 2 ad2antrr φxB+∞ADCC¬x=CB*
86 22 ad2antrr φxB+∞ADCC¬x=CC*
87 elinel1 xB+∞ADCCxB+∞
88 87 elioored xB+∞ADCCx
89 88 ad2antlr φxB+∞ADCC¬x=Cx
90 36 a1i φxB+∞ADCC¬x=C+∞*
91 87 ad2antlr φxB+∞ADCC¬x=CxB+∞
92 ioogtlb B*+∞*xB+∞B<x
93 85 90 91 92 syl3anc φxB+∞ADCC¬x=CB<x
94 6 ad2antrr φxB+∞ADCC¬x=CD*
95 elinel2 xB+∞ADCCxADCC
96 id ¬x=C¬x=C
97 velsn xCx=C
98 96 97 sylnibr ¬x=C¬xC
99 elunnel2 xADCC¬xCxADC
100 95 98 99 syl2an xB+∞ADCC¬x=CxADC
101 16 100 sselid xB+∞ADCC¬x=CxDC
102 101 adantll φxB+∞ADCC¬x=CxDC
103 iooltub D*C*xDCx<C
104 94 86 102 103 syl3anc φxB+∞ADCC¬x=Cx<C
105 85 86 89 93 104 eliood φxB+∞ADCC¬x=CxBC
106 84 105 sselid φxB+∞ADCC¬x=CxBC
107 83 106 pm2.61dan φxB+∞ADCCxBC
108 107 ex φxB+∞ADCCxBC
109 80 108 impbid φxBCxB+∞ADCC
110 109 eqrdv φBC=B+∞ADCC
111 retop topGenran.Top
112 111 a1i φtopGenran.Top
113 32 a1i φADCCV
114 iooretop B+∞topGenran.
115 114 a1i φB+∞topGenran.
116 elrestr topGenran.TopADCCVB+∞topGenran.B+∞ADCCtopGenran.𝑡ADCC
117 112 113 115 116 syl3anc φB+∞ADCCtopGenran.𝑡ADCC
118 110 117 eqeltrd φBCtopGenran.𝑡ADCC
119 20 tgioo2 topGenran.=TopOpenfld𝑡
120 119 oveq1i topGenran.𝑡ADCC=TopOpenfld𝑡𝑡ADCC
121 28 a1i φTopOpenfldTop
122 ioossre DC
123 16 122 sstri ADC
124 123 a1i φADC
125 3 snssd φC
126 124 125 unssd φADCC
127 reex V
128 127 a1i φV
129 restabs TopOpenfldTopADCCVTopOpenfld𝑡𝑡ADCC=TopOpenfld𝑡ADCC
130 121 126 128 129 syl3anc φTopOpenfld𝑡𝑡ADCC=TopOpenfld𝑡ADCC
131 120 130 eqtrid φtopGenran.𝑡ADCC=TopOpenfld𝑡ADCC
132 118 131 eleqtrd φBCTopOpenfld𝑡ADCC
133 isopn3i TopOpenfld𝑡ADCCTopBCTopOpenfld𝑡ADCCintTopOpenfld𝑡ADCCBC=BC
134 35 132 133 syl2anc φintTopOpenfld𝑡ADCCBC=BC
135 27 134 eqtr2d φBC=intTopOpenfld𝑡ADCCBCC
136 24 135 eleqtrd φCintTopOpenfld𝑡ADCCBCC
137 14 15 19 20 21 136 limcres φFDCBClimC=FDClimC
138 12 137 eqtrd φFBClimC=FDClimC