Step |
Hyp |
Ref |
Expression |
1 |
|
limcresiooub.f |
|
2 |
|
limcresiooub.b |
|
3 |
|
limcresiooub.c |
|
4 |
|
limcresiooub.bltc |
|
5 |
|
limcresiooub.bcss |
|
6 |
|
limcresiooub.d |
|
7 |
|
limcresiooub.cled |
|
8 |
|
iooss1 |
|
9 |
6 7 8
|
syl2anc |
|
10 |
9
|
resabs1d |
|
11 |
10
|
eqcomd |
|
12 |
11
|
oveq1d |
|
13 |
|
fresin |
|
14 |
1 13
|
syl |
|
15 |
5 9
|
ssind |
|
16 |
|
inss2 |
|
17 |
|
ioosscn |
|
18 |
16 17
|
sstri |
|
19 |
18
|
a1i |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
3
|
rexrd |
|
23 |
|
ubioc1 |
|
24 |
2 22 4 23
|
syl3anc |
|
25 |
|
ioounsn |
|
26 |
2 22 4 25
|
syl3anc |
|
27 |
26
|
fveq2d |
|
28 |
20
|
cnfldtop |
|
29 |
|
ovex |
|
30 |
29
|
inex2 |
|
31 |
|
snex |
|
32 |
30 31
|
unex |
|
33 |
|
resttop |
|
34 |
28 32 33
|
mp2an |
|
35 |
34
|
a1i |
|
36 |
|
pnfxr |
|
37 |
36
|
a1i |
|
38 |
2
|
xrleidd |
|
39 |
3
|
ltpnfd |
|
40 |
|
iocssioo |
|
41 |
2 37 38 39 40
|
syl22anc |
|
42 |
|
simpr |
|
43 |
|
snidg |
|
44 |
|
elun2 |
|
45 |
3 43 44
|
3syl |
|
46 |
45
|
adantr |
|
47 |
42 46
|
eqeltrd |
|
48 |
47
|
adantlr |
|
49 |
|
simpll |
|
50 |
2
|
adantr |
|
51 |
50
|
adantr |
|
52 |
22
|
adantr |
|
53 |
52
|
adantr |
|
54 |
|
iocssre |
|
55 |
2 3 54
|
syl2anc |
|
56 |
55
|
sselda |
|
57 |
56
|
adantr |
|
58 |
|
simpr |
|
59 |
|
iocgtlb |
|
60 |
50 52 58 59
|
syl3anc |
|
61 |
60
|
adantr |
|
62 |
3
|
ad2antrr |
|
63 |
|
iocleub |
|
64 |
50 52 58 63
|
syl3anc |
|
65 |
64
|
adantr |
|
66 |
|
neqne |
|
67 |
66
|
adantl |
|
68 |
67
|
necomd |
|
69 |
57 62 65 68
|
leneltd |
|
70 |
51 53 57 61 69
|
eliood |
|
71 |
15
|
sselda |
|
72 |
|
elun1 |
|
73 |
71 72
|
syl |
|
74 |
49 70 73
|
syl2anc |
|
75 |
48 74
|
pm2.61dan |
|
76 |
75
|
ralrimiva |
|
77 |
|
dfss3 |
|
78 |
76 77
|
sylibr |
|
79 |
41 78
|
ssind |
|
80 |
79
|
sseld |
|
81 |
24
|
adantr |
|
82 |
42 81
|
eqeltrd |
|
83 |
82
|
adantlr |
|
84 |
|
ioossioc |
|
85 |
2
|
ad2antrr |
|
86 |
22
|
ad2antrr |
|
87 |
|
elinel1 |
|
88 |
87
|
elioored |
|
89 |
88
|
ad2antlr |
|
90 |
36
|
a1i |
|
91 |
87
|
ad2antlr |
|
92 |
|
ioogtlb |
|
93 |
85 90 91 92
|
syl3anc |
|
94 |
6
|
ad2antrr |
|
95 |
|
elinel2 |
|
96 |
|
id |
|
97 |
|
velsn |
|
98 |
96 97
|
sylnibr |
|
99 |
|
elunnel2 |
|
100 |
95 98 99
|
syl2an |
|
101 |
16 100
|
sselid |
|
102 |
101
|
adantll |
|
103 |
|
iooltub |
|
104 |
94 86 102 103
|
syl3anc |
|
105 |
85 86 89 93 104
|
eliood |
|
106 |
84 105
|
sselid |
|
107 |
83 106
|
pm2.61dan |
|
108 |
107
|
ex |
|
109 |
80 108
|
impbid |
|
110 |
109
|
eqrdv |
|
111 |
|
retop |
|
112 |
111
|
a1i |
|
113 |
32
|
a1i |
|
114 |
|
iooretop |
|
115 |
114
|
a1i |
|
116 |
|
elrestr |
|
117 |
112 113 115 116
|
syl3anc |
|
118 |
110 117
|
eqeltrd |
|
119 |
20
|
tgioo2 |
|
120 |
119
|
oveq1i |
|
121 |
28
|
a1i |
|
122 |
|
ioossre |
|
123 |
16 122
|
sstri |
|
124 |
123
|
a1i |
|
125 |
3
|
snssd |
|
126 |
124 125
|
unssd |
|
127 |
|
reex |
|
128 |
127
|
a1i |
|
129 |
|
restabs |
|
130 |
121 126 128 129
|
syl3anc |
|
131 |
120 130
|
eqtrid |
|
132 |
118 131
|
eleqtrd |
|
133 |
|
isopn3i |
|
134 |
35 132 133
|
syl2anc |
|
135 |
27 134
|
eqtr2d |
|
136 |
24 135
|
eleqtrd |
|
137 |
14 15 19 20 21 136
|
limcres |
|
138 |
12 137
|
eqtrd |
|