Metamath Proof Explorer


Theorem limcun

Description: A point is a limit of F on A u. B iff it is the limit of the restriction of F to A and to B . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses limcun.1 φ A
limcun.2 φ B
limcun.3 φ F : A B
Assertion limcun φ F lim C = F A lim C F B lim C

Proof

Step Hyp Ref Expression
1 limcun.1 φ A
2 limcun.2 φ B
3 limcun.3 φ F : A B
4 limcrcl x F lim C F : dom F dom F C
5 4 simp3d x F lim C C
6 5 a1i φ x F lim C C
7 elinel1 x F A lim C F B lim C x F A lim C
8 limcrcl x F A lim C F A : dom F A dom F A C
9 8 simp3d x F A lim C C
10 7 9 syl x F A lim C F B lim C C
11 10 a1i φ x F A lim C F B lim C C
12 prfi A B Fin
13 12 a1i φ C A B Fin
14 1 adantr φ C A
15 2 adantr φ C B
16 cnex V
17 16 ssex A A V
18 14 17 syl φ C A V
19 16 ssex B B V
20 15 19 syl φ C B V
21 sseq1 y = A y A
22 sseq1 y = B y B
23 21 22 ralprg A V B V y A B y A B
24 18 20 23 syl2anc φ C y A B y A B
25 14 15 24 mpbir2and φ C y A B y
26 3 adantr φ C F : A B
27 uniiun A B = y A B y
28 uniprg A V B V A B = A B
29 18 20 28 syl2anc φ C A B = A B
30 27 29 eqtr3id φ C y A B y = A B
31 30 feq2d φ C F : y A B y F : A B
32 26 31 mpbird φ C F : y A B y
33 simpr φ C C
34 13 25 32 33 limciun φ C F lim C = y A B F y lim C
35 34 eleq2d φ C x F lim C x y A B F y lim C
36 reseq2 y = A F y = F A
37 36 oveq1d y = A F y lim C = F A lim C
38 37 eleq2d y = A x F y lim C x F A lim C
39 reseq2 y = B F y = F B
40 39 oveq1d y = B F y lim C = F B lim C
41 40 eleq2d y = B x F y lim C x F B lim C
42 38 41 ralprg A V B V y A B x F y lim C x F A lim C x F B lim C
43 18 20 42 syl2anc φ C y A B x F y lim C x F A lim C x F B lim C
44 43 anbi2d φ C x y A B x F y lim C x x F A lim C x F B lim C
45 limccl F A lim C
46 45 sseli x F A lim C x
47 46 adantr x F A lim C x F B lim C x
48 47 pm4.71ri x F A lim C x F B lim C x x F A lim C x F B lim C
49 44 48 bitr4di φ C x y A B x F y lim C x F A lim C x F B lim C
50 elriin x y A B F y lim C x y A B x F y lim C
51 elin x F A lim C F B lim C x F A lim C x F B lim C
52 49 50 51 3bitr4g φ C x y A B F y lim C x F A lim C F B lim C
53 35 52 bitrd φ C x F lim C x F A lim C F B lim C
54 53 ex φ C x F lim C x F A lim C F B lim C
55 6 11 54 pm5.21ndd φ x F lim C x F A lim C F B lim C
56 55 eqrdv φ F lim C = F A lim C F B lim C