Metamath Proof Explorer


Theorem limcvallem

Description: Lemma for ellimc . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcval.j J = K 𝑡 A B
limcval.k K = TopOpen fld
limcvallem.g G = z A B if z = B C F z
Assertion limcvallem F : A A B G J CnP K B C

Proof

Step Hyp Ref Expression
1 limcval.j J = K 𝑡 A B
2 limcval.k K = TopOpen fld
3 limcvallem.g G = z A B if z = B C F z
4 iftrue z = B if z = B C F z = C
5 4 eleq1d z = B if z = B C F z C
6 2 cnfldtopon K TopOn
7 simpl2 F : A A B G J CnP K B A
8 simpl3 F : A A B G J CnP K B B
9 8 snssd F : A A B G J CnP K B B
10 7 9 unssd F : A A B G J CnP K B A B
11 resttopon K TopOn A B K 𝑡 A B TopOn A B
12 6 10 11 sylancr F : A A B G J CnP K B K 𝑡 A B TopOn A B
13 1 12 eqeltrid F : A A B G J CnP K B J TopOn A B
14 6 a1i F : A A B G J CnP K B K TopOn
15 simpr F : A A B G J CnP K B G J CnP K B
16 cnpf2 J TopOn A B K TopOn G J CnP K B G : A B
17 13 14 15 16 syl3anc F : A A B G J CnP K B G : A B
18 3 fmpt z A B if z = B C F z G : A B
19 17 18 sylibr F : A A B G J CnP K B z A B if z = B C F z
20 ssun2 B A B
21 snssg B B A B B A B
22 8 21 syl F : A A B G J CnP K B B A B B A B
23 20 22 mpbiri F : A A B G J CnP K B B A B
24 5 19 23 rspcdva F : A A B G J CnP K B C
25 24 ex F : A A B G J CnP K B C