Metamath Proof Explorer


Theorem limenpsi

Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Hypothesis limenpsi.1 Lim A
Assertion limenpsi A V A A

Proof

Step Hyp Ref Expression
1 limenpsi.1 Lim A
2 difexg A V A V
3 limsuc Lim A x A suc x A
4 1 3 ax-mp x A suc x A
5 4 biimpi x A suc x A
6 nsuceq0 suc x
7 eldifsn suc x A suc x A suc x
8 5 6 7 sylanblrc x A suc x A
9 limord Lim A Ord A
10 1 9 ax-mp Ord A
11 ordelon Ord A x A x On
12 10 11 mpan x A x On
13 ordelon Ord A y A y On
14 10 13 mpan y A y On
15 suc11 x On y On suc x = suc y x = y
16 12 14 15 syl2an x A y A suc x = suc y x = y
17 8 16 dom3 A V A V A A
18 2 17 mpdan A V A A
19 difss A A
20 ssdomg A V A A A A
21 19 20 mpi A V A A
22 sbth A A A A A A
23 18 21 22 syl2anc A V A A