Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity (cont.)
limensuc
Next ⟩
infensuc
Metamath Proof Explorer
Ascii
Unicode
Theorem
limensuc
Description:
A limit ordinal is equinumerous to its successor.
(Contributed by
NM
, 30-Oct-2003)
Ref
Expression
Assertion
limensuc
⊢
A
∈
V
∧
Lim
⁡
A
→
A
≈
suc
⁡
A
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
A
=
if
Lim
⁡
A
A
On
→
A
∈
V
↔
if
Lim
⁡
A
A
On
∈
V
2
id
⊢
A
=
if
Lim
⁡
A
A
On
→
A
=
if
Lim
⁡
A
A
On
3
suceq
⊢
A
=
if
Lim
⁡
A
A
On
→
suc
⁡
A
=
suc
⁡
if
Lim
⁡
A
A
On
4
2
3
breq12d
⊢
A
=
if
Lim
⁡
A
A
On
→
A
≈
suc
⁡
A
↔
if
Lim
⁡
A
A
On
≈
suc
⁡
if
Lim
⁡
A
A
On
5
1
4
imbi12d
⊢
A
=
if
Lim
⁡
A
A
On
→
A
∈
V
→
A
≈
suc
⁡
A
↔
if
Lim
⁡
A
A
On
∈
V
→
if
Lim
⁡
A
A
On
≈
suc
⁡
if
Lim
⁡
A
A
On
6
limeq
⊢
A
=
if
Lim
⁡
A
A
On
→
Lim
⁡
A
↔
Lim
⁡
if
Lim
⁡
A
A
On
7
limeq
⊢
On
=
if
Lim
⁡
A
A
On
→
Lim
⁡
On
↔
Lim
⁡
if
Lim
⁡
A
A
On
8
limon
⊢
Lim
⁡
On
9
6
7
8
elimhyp
⊢
Lim
⁡
if
Lim
⁡
A
A
On
10
9
limensuci
⊢
if
Lim
⁡
A
A
On
∈
V
→
if
Lim
⁡
A
A
On
≈
suc
⁡
if
Lim
⁡
A
A
On
11
5
10
dedth
⊢
Lim
⁡
A
→
A
∈
V
→
A
≈
suc
⁡
A
12
11
impcom
⊢
A
∈
V
∧
Lim
⁡
A
→
A
≈
suc
⁡
A