Metamath Proof Explorer


Theorem limensuc

Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)

Ref Expression
Assertion limensuc A V Lim A A suc A

Proof

Step Hyp Ref Expression
1 eleq1 A = if Lim A A On A V if Lim A A On V
2 id A = if Lim A A On A = if Lim A A On
3 suceq A = if Lim A A On suc A = suc if Lim A A On
4 2 3 breq12d A = if Lim A A On A suc A if Lim A A On suc if Lim A A On
5 1 4 imbi12d A = if Lim A A On A V A suc A if Lim A A On V if Lim A A On suc if Lim A A On
6 limeq A = if Lim A A On Lim A Lim if Lim A A On
7 limeq On = if Lim A A On Lim On Lim if Lim A A On
8 limon Lim On
9 6 7 8 elimhyp Lim if Lim A A On
10 9 limensuci if Lim A A On V if Lim A A On suc if Lim A A On
11 5 10 dedth Lim A A V A suc A
12 11 impcom A V Lim A A suc A