Metamath Proof Explorer


Theorem limensuci

Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)

Ref Expression
Hypothesis limensuci.1 Lim A
Assertion limensuci A V A suc A

Proof

Step Hyp Ref Expression
1 limensuci.1 Lim A
2 1 limenpsi A V A A
3 2 ensymd A V A A
4 0ex V
5 en2sn V A V A
6 4 5 mpan A V A
7 disjdifr A =
8 limord Lim A Ord A
9 1 8 ax-mp Ord A
10 ordirr Ord A ¬ A A
11 9 10 ax-mp ¬ A A
12 disjsn A A = ¬ A A
13 11 12 mpbir A A =
14 unen A A A A = A A = A A A
15 7 13 14 mpanr12 A A A A A A
16 3 6 15 syl2anc A V A A A
17 0ellim Lim A A
18 1 17 ax-mp A
19 4 snss A A
20 18 19 mpbi A
21 undif A A = A
22 20 21 mpbi A = A
23 uncom A = A
24 22 23 eqtr3i A = A
25 df-suc suc A = A A
26 16 24 25 3brtr4g A V A suc A