Metamath Proof Explorer


Theorem limeq

Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion limeq A = B Lim A Lim B

Proof

Step Hyp Ref Expression
1 ordeq A = B Ord A Ord B
2 neeq1 A = B A B
3 id A = B A = B
4 unieq A = B A = B
5 3 4 eqeq12d A = B A = A B = B
6 1 2 5 3anbi123d A = B Ord A A A = A Ord B B B = B
7 df-lim Lim A Ord A A A = A
8 df-lim Lim B Ord B B B = B
9 6 7 8 3bitr4g A = B Lim A Lim B