Metamath Proof Explorer


Theorem liminflbuz2

Description: A sequence with values in the extended reals, and with liminf that is not -oo , is eventually greater than -oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses liminflbuz2.1 j φ
liminflbuz2.2 _ j F
liminflbuz2.3 φ M
liminflbuz2.4 Z = M
liminflbuz2.5 φ F : Z *
liminflbuz2.6 φ lim inf F −∞
Assertion liminflbuz2 φ k Z j k −∞ < F j

Proof

Step Hyp Ref Expression
1 liminflbuz2.1 j φ
2 liminflbuz2.2 _ j F
3 liminflbuz2.3 φ M
4 liminflbuz2.4 Z = M
5 liminflbuz2.5 φ F : Z *
6 liminflbuz2.6 φ lim inf F −∞
7 nfv j k Z
8 1 7 nfan j φ k Z
9 simpll φ k Z j k φ
10 4 uztrn2 k Z j k j Z
11 10 adantll φ k Z j k j Z
12 5 ffvelrnda φ j Z F j *
13 12 adantr φ j Z ¬ −∞ < F j F j *
14 mnfxr −∞ *
15 14 a1i φ j Z ¬ −∞ < F j −∞ *
16 simpr φ j Z ¬ −∞ < F j ¬ −∞ < F j
17 13 15 16 xrnltled φ j Z ¬ −∞ < F j F j −∞
18 xlemnf F j * F j −∞ F j = −∞
19 13 18 syl φ j Z ¬ −∞ < F j F j −∞ F j = −∞
20 17 19 mpbid φ j Z ¬ −∞ < F j F j = −∞
21 xnegeq F j = −∞ F j = −∞
22 xnegmnf −∞ = +∞
23 21 22 eqtrdi F j = −∞ F j = +∞
24 20 23 syl φ j Z ¬ −∞ < F j F j = +∞
25 24 adantlr φ j Z F j +∞ ¬ −∞ < F j F j = +∞
26 neneq F j +∞ ¬ F j = +∞
27 26 ad2antlr φ j Z F j +∞ ¬ −∞ < F j ¬ F j = +∞
28 25 27 condan φ j Z F j +∞ −∞ < F j
29 28 ex φ j Z F j +∞ −∞ < F j
30 9 11 29 syl2anc φ k Z j k F j +∞ −∞ < F j
31 8 30 ralimdaa φ k Z j k F j +∞ j k −∞ < F j
32 31 imp φ k Z j k F j +∞ j k −∞ < F j
33 12 xnegcld φ j Z F j *
34 33 adantr φ j Z j Z F j j < +∞ F j *
35 pnfxr +∞ *
36 35 a1i φ j Z j Z F j j < +∞ +∞ *
37 eqidd φ j Z F j = j Z F j
38 37 33 fvmpt2d φ j Z j Z F j j = F j
39 38 adantr φ j Z j Z F j j < +∞ j Z F j j = F j
40 simpr φ j Z j Z F j j < +∞ j Z F j j < +∞
41 39 40 eqbrtrrd φ j Z j Z F j j < +∞ F j < +∞
42 34 36 41 xrltned φ j Z j Z F j j < +∞ F j +∞
43 42 ex φ j Z j Z F j j < +∞ F j +∞
44 9 11 43 syl2anc φ k Z j k j Z F j j < +∞ F j +∞
45 8 44 ralimdaa φ k Z j k j Z F j j < +∞ j k F j +∞
46 45 imp φ k Z j k j Z F j j < +∞ j k F j +∞
47 nfmpt1 _ j j Z F j
48 1 33 fmptd2f φ j Z F j : Z *
49 4 fvexi Z V
50 49 a1i φ Z V
51 5 50 fexd φ F V
52 51 liminfcld φ lim inf F *
53 52 xnegnegd φ lim inf F = lim inf F
54 1 2 3 4 5 liminfvaluz3 φ lim inf F = lim sup j Z F j
55 53 54 eqtr2d φ lim sup j Z F j = lim inf F
56 50 mptexd φ j Z F j V
57 56 limsupcld φ lim sup j Z F j *
58 52 xnegcld φ lim inf F *
59 xneg11 lim sup j Z F j * lim inf F * lim sup j Z F j = lim inf F lim sup j Z F j = lim inf F
60 57 58 59 syl2anc φ lim sup j Z F j = lim inf F lim sup j Z F j = lim inf F
61 55 60 mpbid φ lim sup j Z F j = lim inf F
62 nne ¬ lim inf F +∞ lim inf F = +∞
63 53 eqcomd φ lim inf F = lim inf F
64 63 adantr φ lim inf F = +∞ lim inf F = lim inf F
65 xnegeq lim inf F = +∞ lim inf F = +∞
66 65 adantl φ lim inf F = +∞ lim inf F = +∞
67 xnegpnf +∞ = −∞
68 67 a1i φ lim inf F = +∞ +∞ = −∞
69 64 66 68 3eqtrd φ lim inf F = +∞ lim inf F = −∞
70 62 69 sylan2b φ ¬ lim inf F +∞ lim inf F = −∞
71 6 neneqd φ ¬ lim inf F = −∞
72 71 adantr φ ¬ lim inf F +∞ ¬ lim inf F = −∞
73 70 72 condan φ lim inf F +∞
74 61 73 eqnetrd φ lim sup j Z F j +∞
75 1 47 3 4 48 74 limsupubuz2 φ k Z j k j Z F j j < +∞
76 46 75 reximddv3 φ k Z j k F j +∞
77 32 76 reximddv3 φ k Z j k −∞ < F j