Metamath Proof Explorer


Theorem liminflelimsuplem

Description: The superior limit is greater than or equal to the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflelimsuplem.1 φ F V
liminflelimsuplem.2 φ k j k +∞ F j +∞ *
Assertion liminflelimsuplem φ lim inf F lim sup F

Proof

Step Hyp Ref Expression
1 liminflelimsuplem.1 φ F V
2 liminflelimsuplem.2 φ k j k +∞ F j +∞ *
3 simpr i l l
4 simpl i l i
5 3 4 ifcld i l if i l l i
6 5 adantll φ i l if i l l i
7 2 ad2antrr φ i l k j k +∞ F j +∞ *
8 oveq1 k = if i l l i k +∞ = if i l l i +∞
9 8 rexeqdv k = if i l l i j k +∞ F j +∞ * j if i l l i +∞ F j +∞ *
10 9 rspcva if i l l i k j k +∞ F j +∞ * j if i l l i +∞ F j +∞ *
11 6 7 10 syl2anc φ i l j if i l l i +∞ F j +∞ *
12 inss2 F i +∞ * *
13 infxrcl F i +∞ * * sup F i +∞ * * < *
14 12 13 ax-mp sup F i +∞ * * < *
15 14 a1i i l j if i l l i +∞ F j +∞ * sup F i +∞ * * < *
16 inss2 F j +∞ * *
17 infxrcl F j +∞ * * sup F j +∞ * * < *
18 16 17 ax-mp sup F j +∞ * * < *
19 18 a1i i l j if i l l i +∞ F j +∞ * sup F j +∞ * * < *
20 inss2 F l +∞ * *
21 supxrcl F l +∞ * * sup F l +∞ * * < *
22 20 21 ax-mp sup F l +∞ * * < *
23 22 a1i i l j if i l l i +∞ F j +∞ * sup F l +∞ * * < *
24 rexr i i *
25 24 ad2antrr i l j if i l l i +∞ i *
26 pnfxr +∞ *
27 26 a1i i l j if i l l i +∞ +∞ *
28 5 rexrd i l if i l l i *
29 28 adantr i l j if i l l i +∞ if i l l i *
30 icossxr if i l l i +∞ *
31 id j if i l l i +∞ j if i l l i +∞
32 30 31 sseldi j if i l l i +∞ j *
33 32 adantl i l j if i l l i +∞ j *
34 max1 i l i if i l l i
35 34 adantr i l j if i l l i +∞ i if i l l i
36 simpr i l j if i l l i +∞ j if i l l i +∞
37 29 27 36 icogelbd i l j if i l l i +∞ if i l l i j
38 25 29 33 35 37 xrletrd i l j if i l l i +∞ i j
39 25 27 38 icossico2 i l j if i l l i +∞ j +∞ i +∞
40 39 imass2d i l j if i l l i +∞ F j +∞ F i +∞
41 40 ssrind i l j if i l l i +∞ F j +∞ * F i +∞ *
42 12 a1i i l j if i l l i +∞ F i +∞ * *
43 infxrss F j +∞ * F i +∞ * F i +∞ * * sup F i +∞ * * < sup F j +∞ * * <
44 41 42 43 syl2anc i l j if i l l i +∞ sup F i +∞ * * < sup F j +∞ * * <
45 44 adantr i l j if i l l i +∞ F j +∞ * sup F i +∞ * * < sup F j +∞ * * <
46 supxrcl F j +∞ * * sup F j +∞ * * < *
47 16 46 ax-mp sup F j +∞ * * < *
48 47 a1i i l j if i l l i +∞ F j +∞ * sup F j +∞ * * < *
49 16 a1i i l j if i l l i +∞ F j +∞ * F j +∞ * *
50 simpr i l j if i l l i +∞ F j +∞ * F j +∞ *
51 49 50 infxrlesupxr i l j if i l l i +∞ F j +∞ * sup F j +∞ * * < sup F j +∞ * * <
52 rexr l l *
53 52 ad2antlr i l j if i l l i +∞ l *
54 max2 i l l if i l l i
55 54 adantr i l j if i l l i +∞ l if i l l i
56 53 29 33 55 37 xrletrd i l j if i l l i +∞ l j
57 53 27 56 icossico2 i l j if i l l i +∞ j +∞ l +∞
58 57 imass2d i l j if i l l i +∞ F j +∞ F l +∞
59 58 ssrind i l j if i l l i +∞ F j +∞ * F l +∞ *
60 20 a1i i l j if i l l i +∞ F l +∞ * *
61 supxrss F j +∞ * F l +∞ * F l +∞ * * sup F j +∞ * * < sup F l +∞ * * <
62 59 60 61 syl2anc i l j if i l l i +∞ sup F j +∞ * * < sup F l +∞ * * <
63 62 adantr i l j if i l l i +∞ F j +∞ * sup F j +∞ * * < sup F l +∞ * * <
64 19 48 23 51 63 xrletrd i l j if i l l i +∞ F j +∞ * sup F j +∞ * * < sup F l +∞ * * <
65 15 19 23 45 64 xrletrd i l j if i l l i +∞ F j +∞ * sup F i +∞ * * < sup F l +∞ * * <
66 65 ad5ant2345 φ i l j if i l l i +∞ F j +∞ * sup F i +∞ * * < sup F l +∞ * * <
67 66 rexlimdva2 φ i l j if i l l i +∞ F j +∞ * sup F i +∞ * * < sup F l +∞ * * <
68 11 67 mpd φ i l sup F i +∞ * * < sup F l +∞ * * <
69 68 ralrimiva φ i l sup F i +∞ * * < sup F l +∞ * * <
70 nfv l φ
71 xrltso < Or *
72 71 supex sup F l +∞ * * < V
73 72 a1i φ l sup F l +∞ * * < V
74 breq2 y = sup F l +∞ * * < sup F i +∞ * * < y sup F i +∞ * * < sup F l +∞ * * <
75 70 73 74 ralrnmpt3 φ y ran l sup F l +∞ * * < sup F i +∞ * * < y l sup F i +∞ * * < sup F l +∞ * * <
76 75 adantr φ i y ran l sup F l +∞ * * < sup F i +∞ * * < y l sup F i +∞ * * < sup F l +∞ * * <
77 69 76 mpbird φ i y ran l sup F l +∞ * * < sup F i +∞ * * < y
78 oveq1 l = i l +∞ = i +∞
79 78 imaeq2d l = i F l +∞ = F i +∞
80 79 ineq1d l = i F l +∞ * = F i +∞ *
81 80 supeq1d l = i sup F l +∞ * * < = sup F i +∞ * * <
82 81 cbvmptv l sup F l +∞ * * < = i sup F i +∞ * * <
83 82 rneqi ran l sup F l +∞ * * < = ran i sup F i +∞ * * <
84 83 raleqi y ran l sup F l +∞ * * < sup F i +∞ * * < y y ran i sup F i +∞ * * < sup F i +∞ * * < y
85 84 a1i φ i y ran l sup F l +∞ * * < sup F i +∞ * * < y y ran i sup F i +∞ * * < sup F i +∞ * * < y
86 77 85 mpbid φ i y ran i sup F i +∞ * * < sup F i +∞ * * < y
87 supxrcl F i +∞ * * sup F i +∞ * * < *
88 12 87 ax-mp sup F i +∞ * * < *
89 88 rgenw i sup F i +∞ * * < *
90 eqid i sup F i +∞ * * < = i sup F i +∞ * * <
91 90 rnmptss i sup F i +∞ * * < * ran i sup F i +∞ * * < *
92 89 91 ax-mp ran i sup F i +∞ * * < *
93 92 a1i φ i ran i sup F i +∞ * * < *
94 14 a1i φ i sup F i +∞ * * < *
95 infxrgelb ran i sup F i +∞ * * < * sup F i +∞ * * < * sup F i +∞ * * < sup ran i sup F i +∞ * * < * < y ran i sup F i +∞ * * < sup F i +∞ * * < y
96 93 94 95 syl2anc φ i sup F i +∞ * * < sup ran i sup F i +∞ * * < * < y ran i sup F i +∞ * * < sup F i +∞ * * < y
97 86 96 mpbird φ i sup F i +∞ * * < sup ran i sup F i +∞ * * < * <
98 97 ralrimiva φ i sup F i +∞ * * < sup ran i sup F i +∞ * * < * <
99 nfv i φ
100 nfcv _ i
101 nfmpt1 _ i i sup F i +∞ * * <
102 101 nfrn _ i ran i sup F i +∞ * * <
103 nfcv _ i *
104 nfcv _ i <
105 102 103 104 nfinf _ i sup ran i sup F i +∞ * * < * <
106 infxrcl ran i sup F i +∞ * * < * sup ran i sup F i +∞ * * < * < *
107 92 106 ax-mp sup ran i sup F i +∞ * * < * < *
108 107 a1i φ sup ran i sup F i +∞ * * < * < *
109 99 100 105 94 108 supxrleubrnmptf φ sup ran i sup F i +∞ * * < * < sup ran i sup F i +∞ * * < * < i sup F i +∞ * * < sup ran i sup F i +∞ * * < * <
110 98 109 mpbird φ sup ran i sup F i +∞ * * < * < sup ran i sup F i +∞ * * < * <
111 eqid i sup F i +∞ * * < = i sup F i +∞ * * <
112 1 111 liminfvald φ lim inf F = sup ran i sup F i +∞ * * < * <
113 1 90 limsupvald φ lim sup F = sup ran i sup F i +∞ * * < * <
114 112 113 breq12d φ lim inf F lim sup F sup ran i sup F i +∞ * * < * < sup ran i sup F i +∞ * * < * <
115 110 114 mpbird φ lim inf F lim sup F