Metamath Proof Explorer


Theorem liminfresuz

Description: If the real part of the domain of a function is a subset of the integers, the inferior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfresuz.m φM
liminfresuz.z Z=M
liminfresuz.f φFV
liminfresuz.d φdomF
Assertion liminfresuz φlim infFZ=lim infF

Proof

Step Hyp Ref Expression
1 liminfresuz.m φM
2 liminfresuz.z Z=M
3 liminfresuz.f φFV
4 liminfresuz.d φdomF
5 rescom FZ=FZ
6 5 fveq2i lim infFZ=lim infFZ
7 6 a1i φlim infFZ=lim infFZ
8 relres RelF
9 8 a1i φRelF
10 relssres RelFdomFF=F
11 9 4 10 syl2anc φF=F
12 11 eqcomd φF=F
13 12 reseq1d φFM+∞=FM+∞
14 resres FM+∞=FM+∞
15 14 a1i φFM+∞=FM+∞
16 1 2 uzinico φZ=M+∞
17 16 eqcomd φM+∞=Z
18 17 reseq2d φFM+∞=FZ
19 13 15 18 3eqtrrd φFZ=FM+∞
20 19 fveq2d φlim infFZ=lim infFM+∞
21 1 zred φM
22 eqid M+∞=M+∞
23 3 resexd φFV
24 21 22 23 liminfresico φlim infFM+∞=lim infF
25 20 24 eqtrd φlim infFZ=lim infF
26 7 25 eqtrd φlim infFZ=lim infF
27 3 resexd φFZV
28 27 liminfresre φlim infFZ=lim infFZ
29 3 liminfresre φlim infF=lim infF
30 26 28 29 3eqtr3d φlim infFZ=lim infF