Metamath Proof Explorer


Theorem liminfval2

Description: The superior limit, relativized to an unbounded set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfval2.1 G = k sup F k +∞ * * <
liminfval2.2 φ F V
liminfval2.3 φ A
liminfval2.4 φ sup A * < = +∞
Assertion liminfval2 φ lim inf F = sup G A * <

Proof

Step Hyp Ref Expression
1 liminfval2.1 G = k sup F k +∞ * * <
2 liminfval2.2 φ F V
3 liminfval2.3 φ A
4 liminfval2.4 φ sup A * < = +∞
5 oveq1 k = j k +∞ = j +∞
6 5 imaeq2d k = j F k +∞ = F j +∞
7 6 ineq1d k = j F k +∞ * = F j +∞ *
8 7 infeq1d k = j sup F k +∞ * * < = sup F j +∞ * * <
9 8 cbvmptv k sup F k +∞ * * < = j sup F j +∞ * * <
10 1 9 eqtri G = j sup F j +∞ * * <
11 10 liminfval F V lim inf F = sup ran G * <
12 2 11 syl φ lim inf F = sup ran G * <
13 3 ssrexr φ A *
14 supxrunb1 A * n x A n x sup A * < = +∞
15 13 14 syl φ n x A n x sup A * < = +∞
16 4 15 mpbird φ n x A n x
17 10 liminfgf G : *
18 17 ffvelrni n G n *
19 18 ad2antlr φ n x A n x G n *
20 simpll φ n x A n x φ
21 simprl φ n x A n x x A
22 3 sselda φ x A x
23 17 ffvelrni x G x *
24 22 23 syl φ x A G x *
25 20 21 24 syl2anc φ n x A n x G x *
26 imassrn G A ran G
27 frn G : * ran G *
28 17 27 ax-mp ran G *
29 26 28 sstri G A *
30 supxrcl G A * sup G A * < *
31 29 30 ax-mp sup G A * < *
32 31 a1i φ n x A n x sup G A * < *
33 simplr φ n x A n x n
34 20 21 22 syl2anc φ n x A n x x
35 simprr φ n x A n x n x
36 liminfgord n x n x sup F n +∞ * * < sup F x +∞ * * <
37 33 34 35 36 syl3anc φ n x A n x sup F n +∞ * * < sup F x +∞ * * <
38 10 liminfgval n G n = sup F n +∞ * * <
39 38 ad2antlr φ n x A G n = sup F n +∞ * * <
40 10 liminfgval x G x = sup F x +∞ * * <
41 22 40 syl φ x A G x = sup F x +∞ * * <
42 41 adantlr φ n x A G x = sup F x +∞ * * <
43 39 42 breq12d φ n x A G n G x sup F n +∞ * * < sup F x +∞ * * <
44 43 adantrr φ n x A n x G n G x sup F n +∞ * * < sup F x +∞ * * <
45 37 44 mpbird φ n x A n x G n G x
46 29 a1i φ x A G A *
47 nfv j φ
48 inss2 F j +∞ * *
49 infxrcl F j +∞ * * sup F j +∞ * * < *
50 48 49 ax-mp sup F j +∞ * * < *
51 50 a1i φ j sup F j +∞ * * < *
52 47 51 10 fnmptd φ G Fn
53 52 adantr φ x A G Fn
54 simpr φ x A x A
55 53 22 54 fnfvimad φ x A G x G A
56 supxrub G A * G x G A G x sup G A * <
57 46 55 56 syl2anc φ x A G x sup G A * <
58 20 21 57 syl2anc φ n x A n x G x sup G A * <
59 19 25 32 45 58 xrletrd φ n x A n x G n sup G A * <
60 59 rexlimdvaa φ n x A n x G n sup G A * <
61 60 ralimdva φ n x A n x n G n sup G A * <
62 16 61 mpd φ n G n sup G A * <
63 xrltso < Or *
64 63 infex sup F j +∞ * * < V
65 64 rgenw j sup F j +∞ * * < V
66 10 fnmpt j sup F j +∞ * * < V G Fn
67 65 66 ax-mp G Fn
68 breq1 x = G n x sup G A * < G n sup G A * <
69 68 ralrn G Fn x ran G x sup G A * < n G n sup G A * <
70 67 69 ax-mp x ran G x sup G A * < n G n sup G A * <
71 62 70 sylibr φ x ran G x sup G A * <
72 supxrleub ran G * sup G A * < * sup ran G * < sup G A * < x ran G x sup G A * <
73 28 31 72 mp2an sup ran G * < sup G A * < x ran G x sup G A * <
74 71 73 sylibr φ sup ran G * < sup G A * <
75 26 a1i φ G A ran G
76 28 a1i φ ran G *
77 supxrss G A ran G ran G * sup G A * < sup ran G * <
78 75 76 77 syl2anc φ sup G A * < sup ran G * <
79 supxrcl ran G * sup ran G * < *
80 28 79 ax-mp sup ran G * < *
81 xrletri3 sup ran G * < * sup G A * < * sup ran G * < = sup G A * < sup ran G * < sup G A * < sup G A * < sup ran G * <
82 80 31 81 mp2an sup ran G * < = sup G A * < sup ran G * < sup G A * < sup G A * < sup ran G * <
83 74 78 82 sylanbrc φ sup ran G * < = sup G A * <
84 12 83 eqtrd φ lim inf F = sup G A * <