Description: Alternate definition of liminf when the given function is eventually real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | liminfval4.x | |
|
| liminfval4.a | |
||
| liminfval4.m | |
||
| liminfval4.b | |
||
| Assertion | liminfval4 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminfval4.x | |
|
| 2 | liminfval4.a | |
|
| 3 | liminfval4.m | |
|
| 4 | liminfval4.b | |
|
| 5 | inss1 | |
|
| 6 | 5 | a1i | |
| 7 | 2 6 | ssexd | |
| 8 | 4 | rexrd | |
| 9 | 1 7 8 | liminfvalxrmpt | |
| 10 | 4 | rexnegd | |
| 11 | 1 10 | mpteq2da | |
| 12 | 11 | fveq2d | |
| 13 | 12 | xnegeqd | |
| 14 | 9 13 | eqtrd | |
| 15 | eqid | |
|
| 16 | 3 15 2 | liminfresicompt | |
| 17 | 16 | eqcomd | |
| 18 | 2 3 15 | limsupresicompt | |
| 19 | 18 | xnegeqd | |
| 20 | 14 17 19 | 3eqtr4d | |