Description: Omega is a limit ordinal. Theorem 2.8 of BellMachover p. 473. Theorem 1.23 of Schloeder p. 4. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995) (Proof shortened by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limom | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom | |
|
| 2 | ordeleqon | |
|
| 3 | ordirr | |
|
| 4 | 1 3 | ax-mp | |
| 5 | elom | |
|
| 6 | 5 | baib | |
| 7 | 4 6 | mtbii | |
| 8 | limomss | |
|
| 9 | limord | |
|
| 10 | ordsseleq | |
|
| 11 | 1 9 10 | sylancr | |
| 12 | 8 11 | mpbid | |
| 13 | 12 | ord | |
| 14 | limeq | |
|
| 15 | 14 | biimprcd | |
| 16 | 13 15 | syld | |
| 17 | 16 | con1d | |
| 18 | 17 | com12 | |
| 19 | 18 | alrimiv | |
| 20 | 7 19 | nsyl2 | |
| 21 | limon | |
|
| 22 | limeq | |
|
| 23 | 21 22 | mpbiri | |
| 24 | 20 23 | jaoi | |
| 25 | 2 24 | sylbi | |
| 26 | 1 25 | ax-mp | |