Metamath Proof Explorer


Theorem limomss

Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of TakeutiZaring p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003)

Ref Expression
Assertion limomss Lim A ω A

Proof

Step Hyp Ref Expression
1 limord Lim A Ord A
2 ordeleqon Ord A A On A = On
3 elom x ω x On y Lim y x y
4 3 simprbi x ω y Lim y x y
5 limeq y = A Lim y Lim A
6 eleq2 y = A x y x A
7 5 6 imbi12d y = A Lim y x y Lim A x A
8 7 spcgv A On y Lim y x y Lim A x A
9 4 8 syl5 A On x ω Lim A x A
10 9 com23 A On Lim A x ω x A
11 10 imp A On Lim A x ω x A
12 11 ssrdv A On Lim A ω A
13 12 ex A On Lim A ω A
14 omsson ω On
15 sseq2 A = On ω A ω On
16 14 15 mpbiri A = On ω A
17 16 a1d A = On Lim A ω A
18 13 17 jaoi A On A = On Lim A ω A
19 2 18 sylbi Ord A Lim A ω A
20 1 19 mpcom Lim A ω A