Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
limord
Next ⟩
limuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
limord
Description:
A limit ordinal is ordinal.
(Contributed by
NM
, 4-May-1995)
Ref
Expression
Assertion
limord
⊢
Lim
⁡
A
→
Ord
⁡
A
Proof
Step
Hyp
Ref
Expression
1
df-lim
⊢
Lim
⁡
A
↔
Ord
⁡
A
∧
A
≠
∅
∧
A
=
⋃
A
2
1
simp1bi
⊢
Lim
⁡
A
→
Ord
⁡
A