Metamath Proof Explorer


Theorem limsuc2

Description: Limit ordinals in the sense inclusive of zero contain all successors of their members. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Assertion limsuc2 Ord A A = A B A suc B A

Proof

Step Hyp Ref Expression
1 ordunisuc2 Ord A A = A x A suc x A
2 1 biimpa Ord A A = A x A suc x A
3 suceq x = B suc x = suc B
4 3 eleq1d x = B suc x A suc B A
5 4 rspccva x A suc x A B A suc B A
6 2 5 sylan Ord A A = A B A suc B A
7 6 ex Ord A A = A B A suc B A
8 ordtr Ord A Tr A
9 trsuc Tr A suc B A B A
10 9 ex Tr A suc B A B A
11 8 10 syl Ord A suc B A B A
12 11 adantr Ord A A = A suc B A B A
13 7 12 impbid Ord A A = A B A suc B A